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ABSTRACT

The paper studies several non-negative matrix factorization
methods with nearest neighbors constrained dictionaries for
image prediction. The methods considered include the multi-
plicative update algorithm, the projected gradient algorithm,
as well as the graph-regularized NMF solution which aims at
taking into account the geometrical structure of the input data.
The Intra prediction problem based on these NMF solutions
amounts to a neighbor embedding problem. Both prediction
and rate-distortion performances are then given in compari-
son with other neighbor embedding methods like locally lin-
ear embedding (LLE) and locally linear embedding with low
dimensional neigborhood representation (LLE-LDNR).

Index Terms— Image compression, prediction, non-
negative matrix factorization, data dimensionality reduction

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) techniques have
recently become popular for finding representations of non-
negative high dimensional input data [8], [6]. NMF searches
for two lower dimensional nonnegative matrices whose prod-
uct gives a good approximation of the input matrix. One of
the two component matrices can be seen as containing in its
columns basis vectors which will give a good linear approx-
imation of the input data. The underlying assumption is that
two data points which are close in the geometry of the da-
ta distribution will have representations in the searched basis
which will also be close to each other. This is known as the
manifold assumption. The non-negativity constraints allow-
ing only additive linear combinations lead to so-called parts-
based representations.

The NMF problem is actually a least squares problem with
bound constraints. Many algorithms have been proposed to
solve this problem. The first method proposed in [8] was
based on alternating nonnegative least squares. The most
widely used method to solve this problem is the multiplicative
update algorithm proposed in [6]. The alternating nonnega-
tive least squares framework has been revisited by several re-
searchers leading to faster convergence algorithms based on

either the projected gradients method [7] or the block princi-
pal pivoting method [5]. The authors in [5] report faster con-
vergence speed for the projected gradients method when the
tolerance (or approximation error) is loose, that is for the first
iterations, when compared with the block principal pivoting
method, and vice versa when the tolerance is tight.

NMF can be regarded as a data dimensionality reduction
method based on a low rank approximation of the input data
matrix. Other data dimensionality reduction methods include
linear solutions (e.g. PCA) which project the input data into a
lower dimensional space via a linear transformation, non lin-
ear solutions (e.g. Locally Linear Embedding LLE [9], LLE
with Low-Dimensional Neighborhood Representation(LLE-
LDNR) [3], Isomap[10]) which aim at learning the underly-
ing data manifold. The design of these techniques has indeed
been guided by the assumption that the input data is sampled
from a probability distribution on a low dimensional manifold
embedded in the high dimensional Euclidean space [9].

One desired property of data dimensionality reduction
techniques is thus that the geometrical structure of the input
data distribution is preserved in the lower dimensional space.
That is, if two data points are close in the data distribution
geometry, their representations in the low-dimensional space
should also be close. This led to the introduction of further
variants of NMF algorithms, such as Locality Preserving N-
MF [2], graph-regularized NMF (GNMF)[1], and Neighbor-
hood Preserving NMF [4] which add constraints between a
point and its neighbors. In these methods, a nearest neighbor
graph is constructed to capture the intrinsic geometry of the
input data and thus model the local manifold structure.

This paper addresses the problem of Intra prediction which
is a key component of image and video compression algo-
rithms. Given observations, or known samples in a spatial
neighborhood, the goal is to estimate unknown samples of
the block to be predicted. We consider the NMF framework
and adapt several variants of NMF algorithms (multiplicative
updates, projected gradients, and graph regularization) to the
targeted prediction problem. In all methods, we fix one of the
component matrices which can be seen as a dictionary matrix
containing in its columns basis vectors. The non-negative dic-
tionary matrix

�
has in its columns the K nearest neighbors to

the vector formed by the known samples in the neighborhood
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of the block to be predicted. These K nearest neighbors are
texture patches of the same shape taken from the known part
of the image. Only the matrix containing the weights of the
linear approximation must then be found. This corresponds to
a step referred to as neighbor embedding. The underlying as-
sumption is that the corresponding uncomplete and complete
patches have similar neighborhoods on some nonlinear mani-
folds. The neighbor embedding based on NMF for the target-
ed prediction problem is compared with the one given by LLE
and LLE-LDNR which are widely used neighbor embedding
methods.

The rest of the paper is organized as follows. Section 2
formulates the image prediction problem. Section 3 reviews
NMF methods and Section 4 describes the dictionary con-
strained NMF algorithms considered here for prediction. Sec-
tion 5 briefly recalls the compression algorithm with which
the performances of the different methods have been assessed.
Section 6 gives performance illustrations in the context of pre-
diction and compression.

2. THE PREDICTION PROBLEM

Let � be a texture patch which comprises a known part ���
(of a given shape) formed by the pixels located in a causal
neighborhood and of an unknown part ��� formed by the
block to be predicted (see Fig.1). For each input texture patch
� , we constitute a training set of patches by taking all patches
in a search window SW within the coded-decoded causal part
of the image. Each patch of the training set is also formed by a
so-called “known” part (set of ��� pixels at the same positions
as the known pixels of � , also referred to as the template)
and an “unknown” part (set of �	
 pixels at the same positions
as the unknown pixels of � ). We assume that the set of data
points formed by the known template pixels and the set of da-
ta points formed by the complete patches (template plus block
to be predicted) belong to two related manifolds. The goal of
the proposed methods is to “connect” these two manifolds,
and this in order to make sure that a good approximation of
the known part of the input patch (i.e. of the template) will
also lead to a good approximation of the complete patch (tem-
plate plus block to be predicted).

Fig. 1. Prediction problem statement and notations: ��
 is
the approximation support (known pixels), ��� is the current
block to be predicted, and ��� is the search window from
which texture patches are taken to construct the dictionary.

3. NON-NEGATIVE MATRIX FACTORIZATION

NMF is a data dimensionality reduction method based on a
lower rank input data approximation in which the factors are
non negative [6]. Given a non-negative input data matrix
����������� , in which each column is an input data point
(or vector), the aim is thus to find non-negative matrix factors

� ������� � and ����� � ��� which minimize  ! �"# �$% ��&' ( 
) ,
subject to

��*+,
and � *-,

, where  ( %  ( ) denotes the matrix
Frobenius norm.

3.1. Multiplicative Update

Many algorithms exist to solve the above problem, the most
widely used solution being the multiplicative update proce-
dure [6], where the NMF problem is solved by iteratively up-
dating the elements of each matrix

�
and � as

./012�34./01256 �78 ��9 012: � 8 �$% ��; 012
��< 0�3 ��< 0 6 ��� 8 9 < 0: �$% ��� 8 ; < 0

%
(1)

Here, =>? (or @A= ) represents the =BCDE (or @FCDE ) row and ?�CDE (or
=>CDE ) column elements of the corresponding matrices respec-
tively. The Euclidean distance  ( �G# �$% �" ( 

 is decreasing
under the above update rules as shown in [6]. One can inter-
pret that a column vector � < of � is approximated by a linear
combination of the columns of dictionary

�
, the weights be-

ing given by the column vectors of � .

3.2. Projected Gradients

The above problem can also be solved by using a projected
gradient method [7], which updates the two matrix compo-
nents at each iteration H as

�IJKLKM �NO 3PQRSTU . JKL O #VW J!L OX Q JKL OXYZ (2)
� JKL!M �[O 3PQ S U � JKL O #VW JKL O\ Q J!L O\ Z % (3)

where
QRS :]^ ; is a projection of x onto the convex set defining

the subspace of nonnegative real numbers,
Q JKL OX and

Q JKL O\ are

descent directions for V and A, and W JKL OX and W JKL O\ are learning
rules. One simple method for the projection is to zero all
negative values in x.

3.3. Graph-regularized NMF

With the above NMF algorithms, the data representation is
learned in the Euclidean space. A variant, called Graph-
regularized NMF (GNMF) is proposed in [1] which better
takes into account the geometrical structure of the input da-
ta. A graph of the nearest neighbors among the input data
points is first constructed, and the corresponding edge weight
matrix is defined with each element _ <D` a'bcd if the data point
� a is in the set of e neighors of � < and

,
otherwise. The
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problem is then formulated as the minimization of the objec-
tive function

��� ��� � � � ��� �	 ������� 
 � � � 	 � ���
� (4)

where
��� 
 � � denotes the trace of a matrix, and where 
 is the

Graph Laplacian computed as
	 
�� � � with

�
being a

diagonal matrix whose entries are column sums of � . The
multiplicative update rule for the dictionary matrix

�
remains

unchanged with respect to the initial NMF algorithm of [6],
but the update rule for the coefficient matrix becomes:

� � � � � � � � ��� � ��� � � � � � �
 ��� � � � ��� � � ��� � �
�

4. NMF WITH KNN-BASED DICTIONARY

Let us now come back to the problem of image prediction.
Let � � be the input block to be predicted and � � its causal
neighborhood (also called template). Both unknown � � and
known � � pixels form the input patch � (put in a vector
form) to be completed. For each input patch � , we fix the
non-negative dictionary

�
. The columns of the dictionary

matrix
� 
 ���� � are formed by the � -closest texture patches

taken from a search window ��� within the previously cod-
ed/decoded causal part of the image. The distance is comput-
ed between the known samples ��� (template pixels) and the
pixels at the same positions in the patches taken from ��� .
The idea is to first obtain an NMF representation

�����
 of the

known set of pixels ��� and keep the same representation vec-
tor to approximate the unknown pixels � � of the block to be
predicted. Thus only the rules for updating the coefficien-
t matrices (given in Eq.1, Eq.2 and Eq.4) for the three NMF
methods are applied, the dictionary matrix being kept fixed
thru all iterations.

The update equation can be iterated until the residual ener-
gy on the known part � � is under a given threshold or until a
pre-defined iteration number is reached. However, a low ap-
poximation error of the known samples ��� does not induce a
low prediction error and good RD performance for the block
to be predicted ��� . To improve the prediction and RD perfor-
mances, the best number � of nearest patches can be searched
in order to minimize an MSE or and RD cost function on the
block to be predicted. This optimum value of � must then be
signalled to the decoder. Once the best approximation vector� ���
 has been found, the estimated pixels

�� � of the block to
be predicted are then obtained by multiplying the sub-matrix�

by the vector
� ���
 found, as

�� � 
���� � ���
 .

5. APPLICATION TO PREDICTION AND
COMPRESSION

The compression algorithm used for validating the prediction
approach based on the above NMF algorithms with KNN con-
strained dictionary matrices is the same as in [11]. The top �

rows and left � columns of blocks of size � x � are intra pre-
dicted with the H.264/AVC Intra prediction modes. The algo-
rithm then proceeds with the prediction based on NMF, using�

template shapes as in [11]. Once a block has been predict-
ed, the DCT transformed residue is quantized with a uniform
quantizer, zig-zag scanned, and encoded with an algorithm
similar to JPEG. A uniform quantization matrix with  
 !!"
is weighted by a quality factor. The quality factor ( #$% ) is in-
creased from

! "
to & " with a step size of

! "
, and the corre-

sponding weight '()*+ is calculated as

' )*+ 
�, - "./ # % if # %01 - "2 � "#� " 2 # % if # %03 - "
�

(5)

Image blocks are processed in a raster scan order, and the re-
constructed image is obtained by adding the quantized residue
to the prediction. The training patches are collected from
the search region which is located in a causal coded/decoded
neighborhood of the unknown block to be predicted. The op-
timum value of � as well as the best template shape are also
Huffman encoded.

6. PERFORMANCE ILLUSTRATION

Prediction and RD performances obtained are compared with
those given by other neighbor embedding methods, in partic-
ular by LLE [9] and LLE-LDNR [3]. The LLE method with
low-dimensional neighborhood representation is a variant of
LLE in which the embedding weights are computed using a
low-dimensional representation of the input point neighbor-
hood. They are also compared with those obtained with tem-
plate matching (TM) and the H.264 Intra prediction modes.

Fig.2 (left top and bottom) show the PSNR of the predict-
ed Barbara and Cameraman images when the best value of �
(between

!
and 4 ) is searched in order to minimize the pre-

diction error and is then signalled to the decoder. For fixed
� , simulation results have shown that the multiplicative up-
date and GNMF algorithms outperform all the other methods,
however, when optimizing the value of � with the MSE cri-
terion, best prediction performances have been obtained with
the projected gradient method, as shown in Fig.2.

Fig.2 (right top and bottom) shows the Rate-PSNR curves
obtained for the Barbara and Cameraman images with the d-
ifferent methods, when the best value of � (between

!
and

4 ) is searched in order to minimize an RD cost function, and
is then signalled to the decoder. The PSNR values here are
thus those of the reconstructed image when adding the coded
and decoded prediction residue to the predicted image. All5

NMF algorihms lead to comparable results and outperform
LLE-based and TM solutions. They outperform the H264 In-
tra prediction modes on textured images, which are images
on which the simple H.264 Intra prediction modes tend to
fail. These methods are obviously less advantageous on im-
ages (like Cameraman) with large smooth and uniform areas
on which the H.264 Intra prediction modes already give good
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Fig. 2. (Left) Prediction and (right) rate-distortion (RD) performances for Barbara (top) and Cameraman (bottom), with NMF
(multiplicative update), with projected gradients and with GNMF in comparison with LLE and LLE-LDNR. The best � value
is searched in order to minimize the prediction error (for the prediction curves) or the RD cost function (for the RD curves).

results. These methods are thus good candidates as extra pre-
diction modes, which the encoder can select according to an
RD criterion.
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