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ABSTRACT

JPEG2000 Part 2 allows the application of arbitrary wavelet

decomposition structures (wavelet packet bases). Efficient

anisotropic wavelet packet basis selection for the coding

framework of JPEG2000 has been developed and evaluated.

Previous work focused on isotropic wavelet packet basis se-

lection algorithms for JPEG2000, which serves as basis for

the performance of the assessment of anisotropic wavelet ba-

sis selection. Several cost functions are applied in a top-down

anisotropic wavelet packet selection scheme. Our evaluations

employ state-of-the-art quality assessment tools supplemen-

tary to PSNR evaluations.

Index Terms— Image coding, rate-distortion optimiza-

tion, wavelet packet bases, JPEG2000

1. INTRODUCTION

Wavelet packet bases (WPBs) [1] offer to adapt the wavelet

transform to the source signal (image) characteristics and

thus improve the compression performance (anisotropic are

even more flexible). WPBs are an alternative to the classical

dyadic wavelet decomposition (also referred to as pyramidal)

and allow to further decompose all subbands and not just the

LL subband, which leads to an enormous number of possible

WPBs. The application of an adapted wavelet packet basis

(WPB) for image compression purposes has been subject to

investigation since the introduction of the first feasible se-

lection technique called “best basis algorithm” (BBA)[1]. A

brute-force search for the best WPB is computationally infea-

sible even for moderate maximum decomposition depths; for

2-D signals and isotropic wavelet decomposition depth diso
of 4 (corresponds to an anisotropic depth d of 8) there are

4.9×1019 possible isotropic WPBs and even more anisotropic

WPBs (AWPBs), namely 8.4 × 1094. In Figure 1 examples

of WPBs are shown, in Fig 1(b) the best anisotropic WPB for

the artificial image is illustrated. The approach of [1] employs

a rate-independent basis selection scheme, which is based on

various additive cost functions which only estimate the ac-

tual coding cost and thus this scheme is not optimal in a RD

(rate-distortion) sense. The employment of rate-distortion

optimization criteria for WPB selection has been first demon-

strated for classical wavelet-based compression schemes [2].
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Fig. 1. Best WPBs for specific images and the WSQ-WPB

For certain compression schemes, a certain source image, and

a specific target bitrate, the optimal WPB can be computed

in feasible time. In previous work [3], a proprietary wavelet

block-based compression scheme has been introduced incor-

porating the principle of [2] for WPB selection. Subsequent

works of the authors [4] propose fast and efficient basis selec-

tion methods for their proprietary compression system with a

lower computational complexity connected with a little loss

of rate-distortion performance in comparison with the origi-

nal work.

Interestingly, only very recent works discuss RD optimal

(RDO) and efficient isotropic WPB selection in JPEG2000

[5, 6], while anisotropic WPB (AWPB) selection has not yet

been discussed. Thus this works closes this gap and gives

an in-depth analysis and experimental results for AWPB in

JPEG2000.

The most relevant aspects of JPEG2000 for this work are

briefly reviewed in Sect. 2. Sect. 3 presents the approach

of rate-distortion optimal AWPB selection and in-depth

discusses its complexity. More efficient AWPB selection

schemes are discussed in Sect. 4, several more efficient

cost functions are presented and and an analytical model for

computational complexity on the basis of the average decom-

position depth is given. Experimental results are presented in

Sect. 5. Sect. 6 concludes the paper.

2. OVERVIEW OF JPEG2000

JPEG2000 Part 1 employs a pyramidal wavelet transform

and uses the EBCOT-algorithm (embedded block coding

with optimized truncation) to encode the wavelet coefficients.

JPEG2000 Part 2 [7] allows the application of anisotropic
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(a) Rate-distortion statistics of code-

blocks a subband and its potential

children: the anisotropic case

(b) Necessary subbands of isotropic

(red) vs. anisotropic best basis selec-

tion

WPBs. The wavelet coefficients of a subband are grouped in

rectangular blocks (codeblocks), which are coded indepen-

dently to separate bitstreams. A JPEG2000 file (codestream)

consists of a main header followed by several packets. Each

packet increases the decoded image quality. Each packet be-

longs to a certain quality layer and resolution. The embedded

bitstream of a single codeblock has several potential trunca-

tion points, i.e., each codeblock has a separate RD function.

The goal of an encoder is to arrange the bitstream data of all

codeblocks in an RD optimal manner, i.e. to find the trunca-

tion points that minimize the distortion for a given rate. An

optimally coded JPEG2000 codestream can be obtained by

selecting an individual rate for each codeblock.

3. BEST ANISOTROPIC WAVELET PACKET BASES

Anisotropic wavelet packet bases (AWPB) allow to decom-

pose a subband horizontally or vertically, while isotropic

wavelet packet bases only allow a decomposition in both

directions, i.e., horizontally and vertically simultaneously.

Figure 2(a) illustrates a subband and its two possible decom-

positions (vertical and horizontal) and the RD statistics of the

subbands. The RD statistics of a subband are derived from

the RD statistics of its codeblocks. The root of an anisotropic

wavelet packet decomposition tree represents the image, i.e.,

the root subband. A subband has either no or two horizontal

children or two vertical children, which are derived by hori-

zontal or vertical wavelet decomposition. For RDO AWPB,

a parameter λ is selected and the AWP decomposition tree is

visited in bottom-up fashion, the cost of a subband is deter-

mined according to the parameter λ (basically the RD point

with a slope smaller than λ is selected) and it is compared to

the cost of its children. The decomposition with the small-

est cost is selected, which overall selects the best AWPB

(minimum distortion) for a given image and a certain rate.

There are substantially more anisotropic decomposition

trees than isotropic wavelet packet bases. The number of

anisotropic wavelet packet bases is given by the following re-

cursion (A−2 = A−1 = 0):

Ad = 1 + 2A2
d−1 −A4

d−2

At an anisotropic depth of 1 there are 3 possible anisotropic

WPB (no decomposition, vertical horizontal), at an anisotropic

depth of 2 there are already 18 bases (for the comparable

isotropic depth of 1 we have only 2 possible isotropic WPB),

at an anisotropic depth of 4 there are 540273 anisotropic

WPB (compared to 17 isotropic WPB for the comparable

isotropic depth of 2), at an anisotropic depth of 6 there are

≈ 3.75× 1023 bases (isotropic: 83522), and at an anisotropic

depth of 8 there are ≈ 8.4× 1094 (isotropic: ≈ 4.9× 1019).

3.1. Complexity of Best AWPB Selection

RDO-AWPB selection is substantially more complex com-

pared to isotropic WPB selection. This is reflected in its com-

putational complexity estimate which is in O(d2 × n) (even

the most efficient implementation), while isotropic WPB se-

lection is in O(diso × n). Note that diso = d
2 . Figure 2(b)

illustrates the necessary subbands for best basis selection for

a isotropic decomposition depth of 3 which corresponds to an

anisotropic decomposition depth of 6.

The asymptotic complexity of isotropic RDO WPB selec-

tion for a maximum decomposition depth d and an n-element

signal is in O(diso×n) and also in O(nlogn), because diso is

bounded by logn, which is the maximal decomposition depth.

The asymptotic complexity of anisotropic RDO WPB selec-

tion for a maximum decomposition depth d and an n-element

signal is in O(d2 × n) and also in O(nlog2n). Figure 2(b)

illustrates the WPBs that have to be fully JPEG2000 com-

pressed in order to obtain all subbands, e.g., the complexity of

RDO WPB selection with diso = 5 is roughly the same as the

complexity of anisotropic RDO WPB selection with d = 2.

The the complexity of anisotropic RDO WPB selection with

d = 3 already costs 10 full JPEG2000 compressions, and

1.66 times the complexity of isotropic RDO WPB selection

with diso = 5.

4. MORE EFFICIENT AWPB SELECTION

For practical application efficient wavelet packet basis selec-

tion is fundamental. An approach towards cutting the cost of

basis selection is to refrain from using the actual coding costs

(as done in RDO WPB selection) and employ computation-

ally more efficient cost functions. If these cost functions are

additive then the determined basis is optimal in the sense of

the cost function. However, this optimality in terms of a cost

function does not necessarily go hand in hand with optimality

in terms of RD performance, our main goal in the scope of

this work. The BBA with cost functions still is computation-

ally complex, especially for anisotropic WPBs, as all the sub-

bands have to be computed, i.e., the full decomposition tree

has to be computed, which is then visited in a bottom up fash-

ion. The computational complexity of the anisotropic BBA

is in O(d2 × n), while the isotropic BBA is in O(diso × n).
For the BBA a cost for every possible subband has to be com-
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puted, the number of subbands is far more in the anisotropic

case than in the isotropic case (see Fig. 2(b)).

Computational complexity is significantly reduced if the

decomposition tree is visited in a top-down fashion and if the

subbands are only computed if necessary. This algorithm is

briefly sketched:

• Decompose a subband (in case of anisotropic WPBs

horizontally and vertically).

• Compute costs of the subband and its children.

• If subbands cost is minimal, stop, else evaluate each

child of the minimum branch.

This top-down algorithm does not guarantee finding an op-

timal basis for an additive cost function, however, the opti-

mality in terms of a cost function does not imply optimality

in a rate-distortion sense anyways. Alternatively to the op-

timal wavelet packet basis in a rate-distortion sense with the

actual coding bitrate as cost function it has often been pro-

posed to employ simpler cost functions for best basis selec-

tion (although these may not result in best bases in a rate-

distortion sense). In this section we will present common

cost functions. Let ci represent the value of the coefficients

of a subband. The following additive cost functions are cal-

culated, L1-norm:
∑

i |ci|, L2-norm:
∑

i c
2
i , LogE - log en-

ergy metric:
∑

i ln(c2i ), and EIC - entropy information cost or

Shannon metric [1]):
∑

i c
2
i ln(c2i ) . Furthermore, we employ

an entropy based cost function, which basically computes an

entropy estimate for the quantized coefficients of a subband.

The coefficients are quantized, i.e., divided by q and rounded

to the next integer, their distribution statistics are calculated

and these data is used to compute an entropy estimate. This

entropy estimate is weighted with / multiplied by the number

of coefficients in the subband. We refer to this cost function as

weighed entropy estimate, Eq, where q indicates the divisor in

the quantization process. We have extended the basic entropy

cost by a penalty for subbands that become smaller then the

codeblock size (a constant k = 2 is added for every codeblock

contained in the subband, which can be interpreted as two bit

extra coding cost). Additionally we consider the JPEG2000

specific cost of signalling the quantization information for a

subband, i.e., the signalling cost is added to the subband cost.

For quantization type expounded the cost is 16 (2 bytes in the

main header) and for quantization type reversible the extra

cost is 8 (1 byte in the main header) [8].

4.1. Complexity

The main impact on the complexity of all top-down ap-

proaches is the average decomposition depth, d̄, of the se-

lected AWPB, which is highly source image dependent (see

figure 1), e.g., d̄ ≈ 2.66 (d̄iso ≈ 1.33) for the Lena image,

the isotropic WPB of the Artificial image has a d̄ of 3.88

and the anisotropic of 1.94. JPEG2000 Part 2 imposes an

Algorithm 1 Average decomposition depth of an anisotropic

wavelet packet tree

function A(s)

b = s.pop front()

if b == ’0’ then
return 0

else if b == ’1’ then
s.pop front()

return 1 + (A(s) + A(s))/2

end if
end function

upper bound for d̄ of 6.6̇. Listing 1 gives an algorithm to

determine the average decomposition depth of an encoding

of an AWPB, a 0 indicates no decomposition, a 1 indicates a

decomposition and is followed by a bit indicating horizontal

or vertical decomposition. An upper bound of the complexity

of a top-down approach for an image with a WPB with d̄
is CT (d̄) ≤ (d̄ + 1) × (W + F) + B + D, where C is the

cost of JPEG2000 coding the image with one level wavelet

decomposition and D represents the fixed time, e.g., Java

start-up time and file IO (timing measurements are given in

Sec. 3.1). C is mainly comprised of the wavelet transform

cost, W , the coefficient coding, B, and D. F denotes the

cost of evaluating the cost function on all coefficients. The

performance improvements of a top-down approach rely on

d̄+ 1 << d and F << B.

In our implementation top-down best basis search com-

plexity is almost the same as that of a single full JPEG2000

compression (efficient).

5. EXPERIMENTAL RESULTS

The results have been produced with a custom implementa-

tion, which is based on the JJ2000 reference implementation.

For lossy compression the 9-7 irreversible filter with quan-

tization type expounded has been employed. A maximum

decomposition depth of 5 (if not explicitly stated otherwise),

one quality layer, and 64x64 codeblocks have been employed.

Additionally to the well-known PSNR we have assessed the

image quality with state-of-the-art metrics, such as the VIF,

MSSIM, and SSIM [9]. The Matlab package metrix mux has

been employed.

We present results for highly textured data (Brodatz

database) and for fingerprint data (FVC2004 database). There

are two ways to compare anisotropic WPB to isotropic WPB,

based on the complexity to determine the basis or based on

the complexity to compress the image with the given basis. If

we follow the first approach (same selection complexity), we

have to compare isotropic RDO WPB selection (decomposi-

tion depth 5) to anisotropic wavelet packet selection with a

joint decomposition depth of 2, as in both cases the complex-

ity is roughly equal (about six full JPEG2000 compressions).
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Fig. 2. Rate-quality performance

If we choose the second approach, i.e., equal complex-

ity in terms of compression with the computed optimal WPB,

the equivalent anisotropic WPB has a maximum joint decom-

position depth of 10 (for the isotropic decomposition depth

5). The complexity of anisotropic RDO WPB selection would

roughly correspond to 66 full JPEG2000 compressions. Thus

the complexity is too high for practical application and even

straight forward computation. In order to estimate the perfor-

mance of such deep decompositions we give the best perfor-

mance of all results, i.e., from cost functions in the anisotropic

case and the isotropic RDO. Given the results of the best per-

formance of cost functions in the isotropic case this approach

is well justified [6].

At the same complexity anisotropic WPB selection does

not lead to competitive results at all (see Fig. 2(c) and Fig.

2(e)). At the same depth the good results of isotropic RDO

WPB (labelled RDOH) can even be improved. However, the

increased complexity may not justify the necessary compu-

tational effort in some application scenarios. Similar results

are achieved with state-of-the-art quality metrics, Fig. 2(d)

shows the result for the VIF. The top-down approach with

our entropy based cost functions (with the JPEG2000 specific

cost) performed best (with a q of 16).

6. CONCLUSION

Our algorithms enable the efficient selection of anisotropic

WPB in the JPEG2000 coding framework. In terms of com-

pression performance our results show that for highly textured

data, anisotropic wavelet packet bases perform significantly

better than the dyadic decomposition. Anisotropic WPB

slightly outperform isotropic WPB. For RDO selection the

slight performance gain has to be traded off for a significantly

increased computational complexity. However, our proposed

top-down approach with the improved cost functions induces

a very small additional complexity and improves compression

performance. The improved PSNR performance also leads

to improvements in terms of state-of-the-art objective image

quality assessment.
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