
DIRECTION ALIGNMENT ALGORITHM FOR DIRECTION-ADAPTIVE DISCRETE
WAVELET TRANSFORM

Chao-Hsiung Hung1 and Hsueh-Ming Hang2

Department of Electronics Engineering, National Chiao-Tung University, Taiwan

1morning.ee94g@nctu.edu.tw, 2hmhang@mail.nctu.edu.tw

ABSTRACT

2-D discrete wavelet transform (2-D DWT) represents non-
vertical or non-horizontal edges inefficiently. Direction-
adaptive discrete wavelet transform (DA-DWT) solves this
problem by filtering along the directions of textures. DA-
DWT partitions images into many blocks and finds the most
suitable direction of each block. The block partition and
direction information need to be transmitted as side
information. A conventional DA-DWT often produces
inconsistent directions of neighboring blocks and thus
results in large amount of side information. In this paper, we
propose a bottom-up direction alignment algorithm to align
the block directions in local areas. Our algorithm can reduce
50% or more in side-information bits at the cost of
negligible prediction error increase.

Index Terms— Direction-adaptive discrete wavelet
transform, direction alignment, image coding.

1. INTRODUCTION

2-D DWT plays an important role in image coding in recent
years [1]. It applies two 1-D DWTs separately along the
horizontal and vertical directions. However, it does not
represent non-horizontal and non-vertical edges well
because it produces many small coefficients and spreads the
energy into high-pass subbands. Quantizing these
coefficients to zero at low bit rates results Gibbs artifacts at
image edges [2].

The so-called direction-adaptive DWT, DA-DWT, [3]-
[8] finds the most suitable direction for each image block
and thus it provides better coding efficiency than the
conventional 2-D DWT. It partitions images into non-
overlapping blocks. It then applies the wavelet filter to the
block along the candidate directions and calculates the
corresponding prediction errors. It finally selects the
direction with minimal prediction error as the most suitable
direction for the block. Based on this principle, Chang and
Girod proposed a DA-DWT with integer pixel accuracy [3].
Ding et al. adopted interpolation to achieve quarter pixel
accuracy [4]. Liu and Ngan used a weighted function in the
lifting scheme [5]. Dong et al. proposed a 2-D adaptive

interpolate filter for more accurate fractional pixel accuracy
[6]. Chang and Girod proposed another DA-DWT based on
the quincunx subsampling [7]. Xu and Wu combined
different subsampling patterns together and suggested a
subsampling-adaptive DA-DWT [8].

One challenge in the DA-DWT approach is the
significant amount of the side information that contains the
block partition map and the block directions. Tanaka et al.
adopts 2-D filters to reduce the number of candidate
directions of each block [9]. Maleki et al. merge blocks with
similar directions into megablocks [10].

Motivated by these two papers, we propose a bottom-
up direction alignment algorithm to align the direction of
blocks with similar texture directions. First, we partition
images into blocks with the smallest support size and
identify each block’s direction. Then, to reduce the
overhead, we develop a direction adjustment and alignment
algorithm, which tries to combine four blocks of similar
directions into one larger block. Comparing to the original
block direction map without “alignment”, we reduce more
than 50% side information at the cost of about 1%~2%
prediction error increase. Overall, we provide better coding
performance than DA-DWT without direction alignment.

The remainder of this paper is organized as follows.
We describe the proposed direction alignment algorithm in
Section 2. We show the experimental results in Section 3
and conclude this paper by Section 4.

2. DIRECTION ALIGNMENT ALGORITHM

Fig. 1. Candidate directions in [3].

We adopt the 9 wavelet candidate directions in [3] and label
them by the numbers from -4 to 4 in Fig. 1. The DA-DWT
selects the best direction based on the minimum prediction
error for each block. It often results in different directions of

773978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

nearby blocks as shown in Fig. 2, which leads to higher side
information bits. We thus try to align the directions of
neighboring blocks using the Lagrangian cost function. Fig.
3 shows the flow chart of proposed direction alignment
algorithm.

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 2. Direction of each block after DA-DWT. Each sample
represents the direction of an 8×8 block. (a) Barbara and (b) Lena.
Indexes “-4”~“4” correspond to the direction index in Fig. 1 while
index “5” will be used later.

Fig. 3. Flow chart of proposed direction alignment algorithm.

A. Aligning block directions in similar texture regions

Fig. 4. Four scanning paths for GB(m,n).

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 5. Results after step A. UB(i, j) is labeled as “5” and countd is
2. (a) Barbara and (b) Lena.

We first partition an image into non-overlapping blocks of
size BH×BW. We assume an image contains FH×FW blocks.
Each block B(i, j) has a set of prediction errors {D(i, j; d)},
each corresponding to a candidate direction d in Fig. 1(c),
1 i FH, 1 j FW, and -4 d 4.

A Group of Blocks, GB(m, n), is made of 9 blocks:
{B(i, j), m-1 i m+1, n-1 j n+1}. (The block number of a
GB(m, n) is less than 9 at picture boarders.) The Lagrangian
cost function of selecting the same direction d for the entire
GB(m, n) is given by (1), in which the first term is the
cumulative prediction errors of 9 blocks and Rd is the bits to
code the selected direction d.

1 1

1 1

(, ;) (, ;)
m n

GB d
i n j n

L m n d D i j d Rλ
+ +

= − = −

= + (1)

By picking up the minimum cost function value, the best
direction (,)L

GBd m n for GB(m, n) is thus obtained and the
corresponding cost function is (,)L

GBcost m n in (2).
(,) arg min{ (, ;)},

(,) (, ; (,))

L
GB GBd

L L
GB GB GB

d m n L m n d

cost m n L m n d m n

=

=

 (2)

The Lagrangian cost of the original block B(i, j) is defined
by (3). The best direction (,)L

Bd i j and the corresponding
cost function (,)L

Bcost i j are defined by (4). We compare

(,)L
GBcost m n and (,)L

Bcost i j , and then decide the direction

(,)Bd i j for B(i, j) by (5).
(, ;) (, ;)B dL i j d D i j d Rλ= + (3)

(,) arg min{ (, ;)},

(,) (, ; (,))

L
B Bd

L L
B B B

d i j L i j d

cost i j L i j d i j

=

=
 (4)

1 1

1 1

((,) (,) / 1) (,) (,)

(,) (,); 1 1, 1 1

m n
L L L
B GB B B

i m j n

L
B GB

if cost i j cost m n d i j d i j

else d i j d m n m i m n j n

+ +

= − = −

< =

= − ≤ ≤ + − ≤ ≤ +

(5)

When we slide GB(m, n) over an image, its scan order
affects the final result. Therefore, we process GB(m, n) in
all four scanning paths as shown in Fig. 4. Thus, each B(i, j)
has four tentative directions, 1(,)t

Bd i j , 2 (,)t
Bd i j , 3 (,)t

Bd i j ,
4 (,)t

Bd i j corresponding to the four scanning paths. We pick
up the major direction if its accumulative count is higher
than countd. If there is no direction satisfies the preceding
condition, it is called uncertain block, UB(i, j).

The results of two test images after step A are shown in
Fig. 5. The uncertain blocks UB(i, j) appear mostly on the
boundaries between two regions of different texture
directions. It is clear that Step A is able to align block
directions in the regions of similar textures. The uncertain
blocks appear mostly around object boundaries. Step B is
thus proposed.

B. Adjusting block directions on region boundaries

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 6. The directions of UB(i, j) are specified by (4): (a) Barbara
and (b) Lena.

The direction of UB(i, j) is first set to the best direction

(,)L
Bd i j derived from (4). The result is shown in Fig. 6.

Clearly, some B(i, j) are not consistent with either of its
neighboring blocks. We thus adjust their directions as
follows.

774

Each block B(i, j) has four neighboring blocks, B(i-1, j),
B(i+1, j), B(i, j-1), and B(i, j+1). Block B(i, j) is said an
isolated block IB(i, j) if dB(i, j) is different from all its
neighboring block directions, dB(i-1, j), dB(i+1, j), dB(i, j-1),
and dB(i, j+1). We force the direction candidates in (6) to be
these four directions in (7).

(,) arg min{ (, ;) }IB dd i j D i j d Rλ= + (6)
(,) { (1,), (1,), (, 1), (, 1)}IB B B B Bd i j d i j d i j d i j d i j∈ + − + − (7)

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 7. Results after step B: (a) Barbara and (b) Lena.

Fig. 7 shows the results after step B and the directions

of most IB(i, j) blocks are now aligned with their neighbors.
But a few B(i, j) form small clusters and their directions are
different from their neighbors. Thus, we add step C.

C. Adjusting block directions of small clusters

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 8. Results after step C and Citeration=4: (a) Barbara and (b)
Lena.

A connected region is called a small cluster, if this region is
long and narrow (with one-block width). If B(i, j) belongs to
a small cluster, its direction is re-selected by using (7) but
the candidate directions are limited to the other three
neighboring directions that are different from the cluster
direction. This alignment operation may result in some new
IB(i, j) and we can adjust them using (7) again. We iterate
the above procedure for Citeration times.
 Fig. 8 shows the results after step C and all small
clusters seem to disappear. The aligned regions in Fig. 8
have more rectangular shape than those in Fig. 7. The
rectangle shape helps in reducing the side information. We
adopt the coding scheme in [10] to merge blocks into
megablocks and code the megablock directions.

Step B adjusts the directions of blocks around
boundary and step C adjusts those of small clusters. Images
with low-resolution may contain complex textures inside a
small region. Aligning directions of the small regions in this

case may increase prediction error. Thus, applying step B
and step C to low-resolution images is less desirable.

3. EXPERIMENTAL RESULTS

TABLE I
PREDICTION ERRORS OF DIFFERENT SCHEMES

2-D DWT DA-DWT DA-DWT-A
Barbara 1246982.949

(100%)
729310.350
(58.486%)

738823.981
(59.249%)

Elaine 933293.498
(100%)

821529.403
(88.025%)

833158.899
(89.271%)

Lena 582066.474
(100%)

545494.030
(93.717%)

549668.189
(94.434%)

Monarch 621922.367
(100%)

560337.203
(90.098%)

576912.779
(92.763%)

Pentagon 938440.040
(100%)

808399.145
(86.143%)

831827.392
(88.639%)

Spoke 1506005.112
(100%)

787627.590
(52.299%)

805417.063
(53.480%)

TABLE II
SIDE INFORMATION OF DIFFERENT SCHEMES

DA-DWT DA-DWT-A
Barbara 7901

(100%)
3700

(46.829%)
Elaine 13326

(100%)
4709

(35.337%)
Lena 11852

(100%)
4026

(33.970%)
Monarch 11300

(100%)
2179

(19.283%)
Pentagon 5525

(100%)
1171

(21.205%)
Spoke 5551

(100%)
2607

(46.966%)

We first look at the differences before and after direction
alignment in prediction error and side information. We
calculate the prediction error of images after 2-D DWT,
DA-DWT [3], and DA-DWT with direction alignment (DA-
DWT-A). We code the side information of DA-DWT and
DA-DWT-A using [10]. Essentially, we use quadtree
structure to represent the direction map.

The prediction error produced by 2-D DWT is the base
for comparison, i.e., it is 100%, and the prediction error
percentages of the other schemes are thus calculated in
TABLE I. It shows that the DA-DWT-A increases 1%~2%
in prediction error comparing to DA-DWT. For side
information coding, we merge blocks of the same direction
into megblocks and adopt the procedure in [10] to encode
the megablock quadtree map and the directions. The number
of bits needed to encode the DA-DWT side information is
set to 100% and the DA-DWT-A side information is
compared against it in TABLE II. It shows that DA-DWT-A
reduces more than 50% side information bits.

We compare the coding performance among
JPEG2000 (2-D DWT+EBCOT), DA-DWT and DA-DWT-

775

A. For all coding scheme, we adopt CDF 9-7 wavelet filters
[11][12] and EBCOT [13] for wavelet transform and
coefficient coding. The side information of DA-DWT and
DA-DWT-A is coded by the scheme in [10], as said earlier.

30.5

31.5

32.5

33.5

34.5

35.5

36.5

37.5

38.5

39.5

0 0.2 0.4 0.6 0.8 1

PS
N

R

bit per pixel

Lena

JPEG2000

DA-DWT+EBCOT

DA-DWT-A+EBCOT

26.8

27.8

28.8

29.8

30.8

31.8

32.8

33.8

34.8

35.8

0 0.2 0.4 0.6 0.8 1

PS
N

R

bit per pixel

Pentagon

JPEG2000

DA-DWT+EBCOT

DA-DWT-A+EBCOT

20.5

22.5

24.5

26.5

28.5

30.5

32.5

34.5

36.5

0 0.2 0.4 0.6 0.8 1

PS
N

R

bit per pixel

Spoke

JPEG2000

DA-DWT+EBCOT

DA-DWT-A+EBCOT

25

27

29

31

33

35

37

0 0.2 0.4 0.6 0.8 1

PS
N

R

bit per pixel

Barbara

JPEG2000

DA-DWT+EBCOT

DA-DWT-A+EBCOT

(a) (b)

(c) (d)
Fig. 9. PSNR of different coding schemes.

TABLE III

COMPARISON BETWEEN DIFFERENT CODING SCHEMES
Coding
Scheme

DA-DWT-A+EBCOT
compared to

DA-DWT+EBCOT

DA-DWT-A+EBCOT
compared to
JPEG2000

BD-PSNR(dB) BD-BR(%) BD-PSNR(dB) BD-BR(%)
Barbara 0.253 -4.569 1.261 -20.151
Elaine 0.028 -1.674 0.149 -6.375
Lena 0.136 -2.945 0.316 -6.851

Monarch 0.060 -0.992 0.362 -4.541
Pentagon 0.059 -1.687 0.381 -8.642

Spoke 0.218 -3.466 4.485 -47.597

Fig. 9 shows the PSNR of several test images. DA-
DWT-A+EBCOT provides better results than DA-
DWT+EBCOT, particularly at low bit rates because of its
lower side information. Clearly, both DA-DWT+EBCOT
and DA-DWT-A+EBCOT outperform JPEG2000.
 We also use the Bjontegaard delta bit rate (BD-BR)
measure and the Bjontegaard delta PSNR (BD-PSNR)
measure [14] to compare the coding performance. TABLE
III shows that DA-DWT-A+EBCOT provides the best
coding performance.

4. CONCLUSIONS

In this paper, we propose a bottom-up direction alignment
algorithm with three steps. Step A aligns the directions of
textures with similar directions. Step B and Step C adjust
the directions of boundary blocks and small clusters to
match their large neighboring clusters. The proposed
alignment algorithm thus produces only a few dominate
direction regions for the entire picture. It decreases 50% or

higher side information with about 1%~2% increase in
prediction error. Experimental results show that this
algorithm also provides better overall coding performance
than JPEG200 and the original DA-DWT without direction
alignment.

5. ACKNOWLEDGEMENT

This work was supported in part by the NSC, Taiwan under
Grant 98-2221-E-009 -076.

6. REFERENCES

[1] D. Taubman, and M. W. Marcellin, JPEG2000: Image
Compression Fundamentals, Standards, and Practice. Norwell,
MA: Kluwer, 2002.

[2] D. Taubman and A. Zakhor, “Orientation adaptive subband
coding of images,” IEEE Trans. Image Process., vol. 3, no. 4,
pp. 421–437, Apr. 1994.

[3] C.-L. Chang and B. Girod, “Direction-adaptive discrete
wavelet transform for image compression,” IEEE Trans.
Image Processing., vol. 16, no. 5, pp. 1289–1302, May 2007.

[4] W. Ding, F. Wu, X. Wu, S. Li, and H. Li, “Adaptive directional
lifting-based wavelet transform for image coding,” IEEE
Trans. Image Process., vol. 16, no. 2, pp. 416–427, Feb. 2007.

[5] Y. Liu and K. N. Ngan, “Weighted adaptive lifting-based
wavelet transform for image coding,” IEEE Trans. Image
Processing, pp. 500-511, Apr. 2008.

[6] W. Dong, G. Shi, and J. Xu, “Adaptive nonseparable
interpolation for image compression with directional wavelet
transform,” IEEE Signal Processing Letters, vol. 15, pp. 233-
236, 2008.

[7] C. -L. Chang, A. Maleki, and B. Girod, “Adaptive wavelet
transform for image compression via directional quincunx
lifting,” in Proc. IEEE Workshop Multimedia Signal
Processing, Shanghai, China, Oct. 2005.

[8] J. Xu and F. Wu, “Subsampling-adaptive directional wavelet
transform for image coding,” in IEEE Data Compression
Conference, pp. 89-98. March. 2010

[9] Y. Tanaka, M. Hasegawa, S. Kato, M. Ikehara, and T.Q.
Nguyen, “Adaptive directional wavelet transform based on
directional prefiltering,” IEEE Trans. Image Processing., vol.
19, no. 4, pp. 934-945, April. 2010.

[10] A. Maleki, B. Rajaei, and H. R. Pourreza, “Rate-distortion
improvement of directional wavelets by megablocking,” in
Proc. ICASSP, May 2011, pp. 801–804.

[11] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal
bases of compactly supported wavelets,” Commun. Pure Appl.
Math., vol. 45, pp. 485–560, 1992.

[12] I. Daubechies, W. Sweldens, “Factoring wavelet and subband
transforms into lifting steps”, Bell Laboratories, Lucent
Technologies, 1996.

[13] D. Taubman, “High performance scalable image compression
with EBCOT,” IEEE Trans. Image Processing, vol. 9, no. 7,
pp. 1158-1170, Jul. 2000.

[14] G. Bjontegaard, Calculation of average PSNR differences
between RD curves, document VCEG-M33, ITU-T SG16 Q.6
VCEG, Apr. 2001.

776

