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ABSTRACT 
 
2-D discrete wavelet transform (2-D DWT) represents non-
vertical or non-horizontal edges inefficiently. Direction-
adaptive discrete wavelet transform (DA-DWT) solves this 
problem by filtering along the directions of textures. DA-
DWT partitions images into many blocks and finds the most 
suitable direction of each block. The block partition and 
direction information need to be transmitted as side 
information. A conventional DA-DWT often produces 
inconsistent directions of neighboring blocks and thus 
results in large amount of side information. In this paper, we 
propose a bottom-up direction alignment algorithm to align 
the block directions in local areas. Our algorithm can reduce 
50% or more in side-information bits at the cost of 
negligible prediction error increase.  
 

Index Terms— Direction-adaptive discrete wavelet 
transform, direction alignment, image coding. 

 
1. INTRODUCTION 

 
2-D DWT plays an important role in image coding in recent 
years [1]. It applies two 1-D DWTs separately along the 
horizontal and vertical directions. However, it does not 
represent non-horizontal and non-vertical edges well 
because it produces many small coefficients and spreads the 
energy into high-pass subbands. Quantizing these 
coefficients to zero at low bit rates results Gibbs artifacts at 
image edges [2]. 

The so-called direction-adaptive DWT, DA-DWT, [3]-
[8] finds the most suitable direction for each image block 
and thus it provides better coding efficiency than the 
conventional 2-D DWT. It partitions images into non-
overlapping blocks. It then applies the wavelet filter to the 
block along the candidate directions and calculates the 
corresponding prediction errors. It finally selects the 
direction with minimal prediction error as the most suitable 
direction for the block. Based on this principle, Chang and 
Girod proposed a DA-DWT with integer pixel accuracy [3]. 
Ding et al. adopted interpolation to achieve quarter pixel 
accuracy [4]. Liu and Ngan used a weighted function in the 
lifting scheme [5]. Dong et al. proposed a 2-D adaptive 

interpolate filter for more accurate fractional pixel accuracy 
[6]. Chang and Girod proposed another DA-DWT based on 
the quincunx subsampling [7]. Xu and Wu combined 
different subsampling patterns together and suggested a 
subsampling-adaptive DA-DWT [8].  

One challenge in the DA-DWT approach is the 
significant amount of the side information that contains the 
block partition map and the block directions. Tanaka et al. 
adopts 2-D filters to reduce the number of candidate 
directions of each block [9]. Maleki et al. merge blocks with 
similar directions into megablocks [10]. 

Motivated by these two papers, we propose a bottom-
up direction alignment algorithm to align the direction of 
blocks with similar texture directions. First, we partition 
images into blocks with the smallest support size and 
identify each block’s direction. Then, to reduce the 
overhead, we develop a direction adjustment and alignment 
algorithm, which tries to combine four blocks of similar 
directions into one larger block. Comparing to the original 
block direction map without “alignment”, we reduce more 
than 50% side information at the cost of about 1%~2% 
prediction error increase. Overall, we provide better coding 
performance than DA-DWT without direction alignment.  

The remainder of this paper is organized as follows. 
We describe the proposed direction alignment algorithm in 
Section 2. We show the experimental results in Section 3 
and conclude this paper by Section 4. 
 

2. DIRECTION ALIGNMENT ALGORITHM 
 

 
Fig. 1. Candidate directions in [3]. 

 
We adopt the 9 wavelet candidate directions in [3] and label 
them by the numbers from -4 to 4 in Fig. 1. The DA-DWT 
selects the best direction based on the minimum prediction 
error for each block. It often results in different directions of 

773978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



nearby blocks as shown in Fig. 2, which leads to higher side 
information bits. We thus try to align the directions of 
neighboring blocks using the Lagrangian cost function. Fig. 
3 shows the flow chart of proposed direction alignment 
algorithm. 
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Fig. 2. Direction of each block after DA-DWT. Each sample 
represents the direction of an 8×8 block. (a) Barbara and (b) Lena. 
Indexes “-4”~“4” correspond to the direction index in Fig. 1 while 
index “5” will be used later. 
 

 
Fig. 3. Flow chart of proposed direction alignment algorithm. 

 
A. Aligning block directions in similar texture regions 
 

 
Fig. 4. Four scanning paths for GB(m,n). 
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Fig. 5. Results after step A. UB(i, j) is labeled as “5” and countd is 
2. (a) Barbara and (b) Lena. 
 
We first partition an image into non-overlapping blocks of 
size BH×BW. We assume an image contains FH×FW blocks. 
Each block B(i, j) has a set of prediction errors {D(i, j; d)}, 
each corresponding to a candidate direction d in Fig. 1(c), 
1 i FH, 1 j FW, and -4 d 4.  

A Group of Blocks, GB(m, n), is made of 9 blocks: 
{B(i, j), m-1 i m+1, n-1 j n+1}. (The block number of a 
GB(m, n) is less than 9 at picture boarders.) The Lagrangian 
cost function of selecting the same direction d for the entire 
GB(m, n) is given by (1), in which the first term is the 
cumulative prediction errors of 9 blocks and Rd is the bits to 
code the selected direction d.  

1 1

1 1

( , ; ) ( , ; )
m n

GB d
i n j n

L m n d D i j d Rλ
+ +

= − = −

= +  (1)

By picking up the minimum cost function value, the best 
direction ( , )L

GBd m n for GB(m, n) is thus obtained and the 
corresponding cost function is ( , )L

GBcost m n in (2).  
( , ) arg min{ ( , ; )},

( , ) ( , ; ( , ))

L
GB GBd
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GB GB GB
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=

=

 (2)

The Lagrangian cost of the original block B(i, j) is defined 
by (3). The best direction ( , )L

Bd i j  and the corresponding 
cost function  ( , )L

Bcost i j  are defined by (4). We compare 

( , )L
GBcost m n  and ( , )L

Bcost i j , and then decide the direction 

( , )Bd i j  for B(i, j) by (5). 
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When we slide GB(m, n) over an image, its scan order 
affects the final result. Therefore, we process GB(m, n) in 
all four scanning paths as shown in Fig. 4. Thus, each B(i, j) 
has four tentative directions, 1( , )t

Bd i j , 2 ( , )t
Bd i j , 3 ( , )t

Bd i j , 
4 ( , )t

Bd i j  corresponding to the four scanning paths. We pick 
up the major direction if its accumulative count is higher 
than countd.  If there is no direction satisfies the preceding 
condition, it is called uncertain block, UB(i,  j).  

The results of two test images after step A are shown in 
Fig. 5. The uncertain blocks UB(i, j) appear mostly on the 
boundaries between two regions of different texture 
directions. It is clear that Step A is able to align block 
directions in the regions of similar textures. The uncertain 
blocks appear mostly around object boundaries. Step B is 
thus proposed. 
 
B. Adjusting block directions on region boundaries 
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Fig. 6. The directions of UB(i, j) are specified by (4): (a) Barbara 
and (b) Lena. 
 
The direction of UB(i, j) is first set to the best direction 

( , )L
Bd i j  derived from (4). The result is shown in Fig. 6. 

Clearly, some B(i, j) are not consistent with either of its 
neighboring blocks. We thus adjust their directions as 
follows. 
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Each block B(i, j) has four neighboring blocks, B(i-1, j), 
B(i+1, j), B(i, j-1), and B(i, j+1). Block B(i, j) is said an 
isolated block IB(i, j) if dB(i, j) is different from all its 
neighboring block directions, dB(i-1, j), dB(i+1, j), dB(i, j-1), 
and dB(i, j+1). We force the direction candidates in (6) to be 
these four directions in (7).  

( , ) arg min{ ( , ; ) }IB dd i j D i j d Rλ= +  (6)
( , ) { ( 1, ), ( 1, ), ( , 1), ( , 1)}IB B B B Bd i j d i j d i j d i j d i j∈ + − + − (7)
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Fig. 7. Results after step B: (a) Barbara and (b) Lena. 

 
Fig. 7 shows the results after step B and the directions 

of most IB(i, j) blocks are now aligned with their neighbors. 
But a few B(i, j) form small clusters and their directions are 
different from their neighbors. Thus, we add step C. 
 
C. Adjusting block directions of small clusters 
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Fig. 8. Results after step C and Citeration=4: (a) Barbara and (b) 
Lena. 
 
A connected region is called a small cluster, if this region is 
long and narrow (with one-block width). If B(i, j) belongs to 
a small cluster, its direction is re-selected by using (7) but 
the candidate directions are limited to the other three 
neighboring directions that are different from the cluster 
direction. This alignment operation may result in some new 
IB(i, j) and we can adjust them using (7) again. We iterate 
the above procedure for Citeration times.  
        Fig. 8 shows the results after step C and all small 
clusters seem to disappear. The aligned regions in Fig. 8 
have more rectangular shape than those in Fig. 7. The 
rectangle shape helps in reducing the side information. We 
adopt the coding scheme in [10] to merge blocks into 
megablocks and code the megablock directions. 

Step B adjusts the directions of blocks around 
boundary and step C adjusts those of small clusters. Images 
with low-resolution may contain complex textures inside a 
small region. Aligning directions of the small regions in this 

case may increase prediction error. Thus, applying step B 
and step C to low-resolution images is less desirable. 
 

3. EXPERIMENTAL RESULTS 
 

TABLE I 
PREDICTION ERRORS OF DIFFERENT SCHEMES 

2-D DWT DA-DWT DA-DWT-A
Barbara 1246982.949

(100%)
729310.350
(58.486%)

738823.981
(59.249%)

Elaine 933293.498
(100%)

821529.403
(88.025%)

833158.899
(89.271%)

Lena 582066.474
(100%)

545494.030
(93.717%)

549668.189
(94.434%)

Monarch 621922.367
(100%)

560337.203
(90.098%)

576912.779
(92.763%)

Pentagon 938440.040
(100%)

808399.145
(86.143%)

831827.392
(88.639%)

Spoke 1506005.112
(100%)

787627.590
(52.299%)

805417.063
(53.480%)

 
 

TABLE II 
SIDE INFORMATION OF DIFFERENT SCHEMES 

DA-DWT DA-DWT-A
Barbara 7901

(100%)
3700

(46.829%)
Elaine 13326

(100%)
4709

(35.337%)
Lena 11852

(100%)
4026

(33.970%)
Monarch 11300

(100%)
2179

(19.283%)
Pentagon 5525

(100%)
1171

(21.205%)
Spoke 5551

(100%)
2607

(46.966%)
 

 
We first look at the differences before and after direction 
alignment in prediction error and side information. We 
calculate the prediction error of images after 2-D DWT, 
DA-DWT [3], and DA-DWT with direction alignment (DA-
DWT-A). We code the side information of DA-DWT and 
DA-DWT-A using [10]. Essentially, we use quadtree 
structure to represent the direction map.  

The prediction error produced by 2-D DWT is the base 
for comparison, i.e., it is 100%, and the prediction error 
percentages of the other schemes are thus calculated in 
TABLE I. It shows that the DA-DWT-A increases 1%~2% 
in prediction error comparing to DA-DWT. For side 
information coding, we merge blocks of the same direction 
into megblocks and adopt the procedure in [10] to encode 
the megablock quadtree map and the directions. The number 
of bits needed to encode the DA-DWT side information is 
set to 100% and the DA-DWT-A side information is 
compared against it in TABLE II. It shows that DA-DWT-A 
reduces more than 50% side information bits. 

We compare the coding performance among 
JPEG2000 (2-D DWT+EBCOT), DA-DWT and DA-DWT-
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A. For all coding scheme, we adopt CDF 9-7 wavelet filters 
[11][12] and EBCOT [13] for wavelet transform and 
coefficient coding. The side information of DA-DWT and 
DA-DWT-A is coded by the scheme in [10], as said earlier. 
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Fig. 9. PSNR of different coding schemes.  

 
TABLE III 

COMPARISON BETWEEN DIFFERENT CODING SCHEMES 
Coding
Scheme

DA-DWT-A+EBCOT
compared to

DA-DWT+EBCOT

DA-DWT-A+EBCOT
compared to
JPEG2000

BD-PSNR(dB) BD-BR(%) BD-PSNR(dB) BD-BR(%)
Barbara 0.253 -4.569 1.261 -20.151
Elaine 0.028 -1.674 0.149 -6.375
Lena 0.136 -2.945 0.316 -6.851

Monarch 0.060 -0.992 0.362 -4.541
Pentagon 0.059 -1.687 0.381 -8.642

Spoke 0.218 -3.466 4.485 -47.597  
 

Fig. 9 shows the PSNR of several test images. DA-
DWT-A+EBCOT provides better results than DA-
DWT+EBCOT, particularly at low bit rates because of its 
lower side information. Clearly, both DA-DWT+EBCOT 
and DA-DWT-A+EBCOT outperform JPEG2000. 
        We also use the Bjontegaard delta bit rate (BD-BR) 
measure and the Bjontegaard delta PSNR (BD-PSNR) 
measure [14] to compare the coding performance. TABLE 
III shows that DA-DWT-A+EBCOT provides the best 
coding performance.  
 

4. CONCLUSIONS 
 
In this paper, we propose a bottom-up direction alignment 
algorithm with three steps. Step A aligns the directions of 
textures with similar directions. Step B and Step C adjust 
the directions of boundary blocks and small clusters to 
match their large neighboring clusters. The proposed 
alignment algorithm thus produces only a few dominate 
direction regions for the entire picture. It decreases 50% or 

higher side information with about 1%~2% increase in 
prediction error. Experimental results show that this 
algorithm also provides better overall coding performance 
than JPEG200 and the original DA-DWT without direction 
alignment.  
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