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ABSTRACT
This paper shows that pattern classification based on machine
learning is a powerful tool to analyze human brain activity
data obtained by magnetoencephalography (MEG). We pro-
pose a new weighting method using a multiple kernel learn-
ing (MKL) algorithm to localize the brain area contributing to
the accurate vowel discrimination. Our MKL simultaneously
estimates both the classification boundary and the weight of
each MEG sensor; MEG amplitude obtained from each pair
of sensors is an element of the feature vector. The estimated
weight indicates how the corresponding sensor is useful for
classifying the MEG response patterns. Our results show both
the large-weight MEG sensors mainly in a language area of
the brain and the high classification accuracy (73.0%) in the
100 ∼ 200 ms latency range.

Index Terms— brain area, magnetoencephalography,
brain activity, weighting, kernel learning

1. INTRODUCTION

Non-invasive measurements using magnetoencephalography
(MEG) have recently been used to study how stimulus fea-
tures are processed in the human brain. In particular, because
neural electric activity of the brain associated with speech and
language stimuli happens in a time frame of milliseconds, the
high temporal resolution of MEG is required for measuring
rapid changes in brain activity during speech perception. Re-
search carried out with MEG has reported left hemisphere
dominance for processing of vowels in right-handed subjects
[1], and the prominent N1m wave of the auditory-evoked field
has been shown to exhibit sensitivity to a variety of acoustic
attributes of the speech signal [2], as well.

Recently, application of pattern recognition methods to
neuromagnetic responses has created much interest, and
progress has been made through the use of machine learning,
such as support vector machines (SVMs) [3, 4, 5]. SVMs
are efficient tools for automatic recognition, but neuroscience
research requires not only classification tools (that have high
accuracy) but also analysis tools that can locate both the
dominant area of the brain, showing strong activity related to

speech and language, and the significant time frame, exhibit-
ing this increased brain activity.

A multiple kernel learning (MKL) algorithm is a machine-
learning-based technique for learning proper weights of the
corresponding kernels, in using multiple classifiers with a
kernel, such as SVM. MKL has been used as an integration
method by calculating appropriate weights corresponding to
each kernel, while classical kernel-based methods (such as
SVMs) are based on a single kernel only. In image process-
ing research field, object recognition methods based on MKL
have been proposed for integrating image features [6].

In this paper, we present a new weighting method for the
MKL algorithm, where the weight is associated with each
MEG sensor. In our approach, MKL was applied to MEG re-
sponses or amplitudes, to localize brain areas that contribute
to the accurate decoding of vowels. Sixty-one MEG ampli-
tudes, each calculated from each of 61 pairs of MEG sensors
(in total 122 MEG sensors), constituting a 61-dimensional
feature vector, are separately weighted; each weight value cal-
culated by MKL indicates how useful each MEG sensor pair
is for classifying the MEG responses to vowel recognition. To
identify the MEG sensors or brain areas important for vowel
recognition in a subject-independent (subject-open) fashion,
the weights were averaged across subjects.

2. RECORDING OF MEG RESPONSES TO VOWELS

Eight right-handed volunteers (4 males and 4 females; 21-25
years old) were recruited as subjects after obtaining consent
forms from them. All were native Japanese speakers with
normal hearing.

We used two speech sounds (Japanese vowels), /a/ and /o/,
to explore subject’s vowel recognition process in the brain.
These 200-ms auditory stimuli were delivered to the subject’s
right ear through a plastic tube with a random interstimulus
interval between 1,300 and 1,500 ms. The subject’s task was
to press a reaction key with the index finger when the subject
identified the stimulus /a/ and another reaction key with the
middle finger when the subject identified the stimulus /o/.

Neuromagnetic data were recorded by a 122-channel
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whole-scalp Neuromag MEG system in a magnetically shielded
room. The MEG signal was sampled at 497 Hz for 1,200 ms
including a 100-ms pre-stimulus baseline; more than 80
epochs were averaged to increase the S/N ratio. A low-pass
filter with a cutoff frequency of 40 Hz was used in calculating
the feature vector. Epochs in which the magnetic signal ex-
ceeded an absolute amplitude variation of 3,000 fT/cm were
discarded. Eye-movement artifacts were also automatically
removed (threshold = 150 μV).

Feature extraction was applied to a 996-ms MEG signal.
Since the mean reaction times, however, for /a/ and /o/ were
495.1 ms (SD = 51.7) and 497.3 ms (SD = 46.8), respectively.
The MEG feature vectors up to 450 ms were used to analyze
the MEG response pattern to localize the brain activation dur-
ing recognizing vowels.

3. FEATURE EXTRACTION

The signal obtained by averaging over 80 MEG epochs
was converted (using a feature extraction transformation)
into a representation more amenable to subject-independent
recognition. As inter-subject variability in MEG signals de-
grades the recognition accuracy of a machine learning system,
MEG magnitude was normalized by the following statistical
method.

The MEG signal at time t is represented by

x(t) = [x1(t), · · · , xm(t), · · · , xM (t)]T (1)

where xm(t) denotes the observation at the m-th sensor, and
the symbol M denotes the total number of MEG sensors. To
avoid canceling problems due to the polarity difference be-
tween subjects, the MEG magnitude was first calculated by
the following Eq. (2), which is a vector magnitude of paired
vertical and horizontal sensors.

yj(t) =
√
x2
i (t) + x2

i+1(t) (2)

where yj(t) (1 ≤ j ≤M/2) is the magnitude feature.
To reduce the inter-subject variability problems in MEG

magnitudes, the magnitude feature is normalized to have zero
mean and unit variance.

ŷj(t) = (yj(t)− ȳj)/σj (3)

ȳj =
1

T

∑
t yj(t), σj =

√
1
T

∑
t(yj(t)− ȳj)

2 (4)

where ȳj denotes the mean magnitude feature, T denotes the
total number of samples for each averaged epoch, and σj de-
notes the standard deviation. Figure 1 shows average MEG
response magnitudes from a sensor over the left language area
of a typical subject. The deflection at 100 ms is clearly strong
for both stimuli /a/ and /o/, but the difference between /a/ and
/o/ is also seen between 150 and 250 ms.
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Fig. 1. Normalized MEG-magnitude features obtained at a
single MEG-sensor site with a pair of MEG sensors over the
left language area of a typical subject.

The normalized MEG magnitude feature at each MEG
sensor, obtained from Eq. (3), constituted 61-dimensional
MEG-magnitude feature vector, as shown in Eq. (5), for fur-
ther analysis or classification using a multiple kernel learning
algorithm.

ŷ(t) = [ŷ1(t), · · · , ŷM ′(t)]T , M ′ = M/2 (5)

4. MEG-SENSORWEIGHTING AND
CLASSIFICATION BASED ONMKL

The MKL algorithm has been used to integrate multiple con-
ventional kernel-based methods, such as SVMs, which rely
only on a single kernel (See Fig. 2 upper panel) by assign-
ing appropriate weights to those multiple component kernels.
Our MKL approach was developed to localize brain areas as-
sociated with the subject’s task, namely the accurate decoding
of vowels, by assigning independent weights to each MEG
sensor, where the larger the MEG-sensor weight is, the more
important role the brain activity underneath the MEG-sensor
plays.

In an MKL framework, a total or global kernel function is
defined as a linear combination of the base kernels.

k(ŷ(p), ŷ(q)) =
∑

l βlkl(ŷ(p), ŷ(q)) (6)

Here kl is the l-th base kernel computed from the p-th and
q-th samples of the feature vector ŷ(p) and ŷ(q), and the
non-negative coefficient βl represents the weight of the base
kernel. The MKL approach for SVMs has been originally
used to improve the classifier performance by combining var-
ious classifiers with different kernels, each receiving the same
feature vector. In recent image recognition research, how-
ever, the MKL approach started being used for the purpose
of feature vector selection or weighting. For this purpose, the
weight is independently trained for each base kernel receiv-
ing different feature vector [6]; see Fig. 2 lower panel. Since
the weight is different depending on the feature vector, call
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Fig. 2. A conventional SVM and a new weighting method
based on MKL.

this method a feature-weighting MKL method in this paper.
Simplifying this new approach, we have previously proposed
a method for single-channel sound source localization using
the acoustic transfer function, where each dimension of the
acoustic transfer function is selected using [7].

In this paper, we employ a simplified version of the above
mentioned feature-weighting method, similar to that proposed
in [7]. In this simplified version, each dimension or element
of the MEG feature vector corresponds to an MEG magnitude
at a pair of sensors, which in turn associated with a brain area
underneath this pair of MEG sensors; the weight assigned
to each dimension is trained using MKL; and each weight
also corresponds to each base kernel (see Fig. 2 lower panel).
Although SVM can work as an efficient tool for classifying
multiple MEG activities, due to its single kernel nature, it
is difficult for a single kernel SVM to localize the brain ar-
eas, which MEG data would be able to provide. On the other
hand, the MKL-SVM introduced in this paper can localize the
brain areas that is involved in discriminating two vowels, by
estimating the weight of each dimension of the feature vec-
tor because the large weight indicates that there is informa-
tion useful for classifying the MEG responses. In this paper,
the feature weights are trained by defining the base kernel for
each of 61 dimensions of the feature vector as follows:

k(ŷ(p), ŷ(q)) =
∑

j βjkj(ŷj(p), ŷj(q)) (7)

The kernel weight βj is trained on an SVM framework (i.e.,
maximum-margin-based scheme). In the SVM framework,
the MKL criterion is defined by the following objective func-
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Fig. 3. Classification accuracy using MKL in each 100-ms
latency range.

tion.

max
α,β

∑
p α(p)− 1

2

∑
p,q α(p)α(q)z(p)z(q)

·∑j βjkj(ŷj(p), ŷj(q))

s.t.

{ ∑
p z(p)α(p) = 0, 0 ≤ α(p) ≤ C∑

j βj = 1, βj ≥ 0
(8)

Here α(p) is the Lagrange coefficient, and z(p) = {+1,−1}
denotes the class label of example ŷ(p). C determines the
trade-off between the margin and training data error. In
Eq. (8), both α(p) and βj are optimized by a two-step it-
erative procedure. In the first step, βj is fixed, and α(p) is
updated by a standard SVM solver. In the second step, α(p) is
fixed, and βj is optimized by a projected-gradient scheme. In
this way, the feature weights and the classification boundary
are trained simultaneously.

5. SUBJECT-INDEPENDENT ANALYSIS ON
RECORDED MEG DATA

5.1. Analysis conditions

The MKL-based analysis was evaluated on neuromagnetic re-
sponses to recognition of the vowel sounds /a/ and /o/. The to-
tal number of subjects was 8. We used leave-one-subject-out
cross-validation, where the number of training subjects was 7,
and the remaining one subject was used as the test data. We
then repeated this until all the subjects were tested. The MKL
algorithm was independently applied to every latency range,
where a single latency range contains 50 samples (about 100
ms with a sampling frequency of 497 Hz). The frame period
was set to 25 samples, meaning that the 100-ms latency range
moves every about 50 ms from 0 ms until 350 ms. Since the
reaction times for both speech sounds were about 500 ms, we
assumed the discrimination was finished by 400 ms at latest,
resulting in the final latency range from 350ms to 450 ms for
further analysis. A Gaussian kernel was employed as the ker-
nel function, and the hyper parameter C in Eq. (8) was 1.
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Fig. 4. MEG-sensor weighting based on MKL. There are 9
top-view circle heads with nose upward.

5.2. Analysis results

Figure 3 shows the average classification accuracies obtained
from subject-independent (subject-open) analysis. As can be
seen in this figure, the classification accuracy first increased
as a function of time, reached a maximum vale of 73.9%
in the latency range between 100 and 200 ms, and then de-
creased to a chance level (50%) in the latency range between
250 and 350 ms. The classification accuracy of 73.9% gives
3.5% higher than the best accuracy of a single kernel SVM.
Welch’s unpaired t-test (at the 2.5% significance level) shows
that the MKL method gives significantly better classification
performance in the latency range between both 100 and 200
ms, and 150 and 250 ms compared with that at the 100-ms
pre-stimulus baseline.

To localize MEG sensor important for MEG activity pat-
tern classification using MKL, which were considered to
have contributed to the processing of vowel recognition, the
MEG sensor weights (βj in Eq. (7)) obtained from the MKL
method are displayed on a topological plot of the scalp in
Fig. 4. Figure 4 shows color-coded average weights for each
MEG sensor in each latency range; more important or more
highly weighted MEG sensors for classifying neuromagnetic
responses are shown in darker colors; the black areas indicate
that this area of the brain played an important role in classifi-
cation of neuromagnetic responses to vowel recognition. The
larger weights in the latency range both between 100 and 200
ms and between 150 and 250 ms, where high accuracy was

achieved, are seen to be in the left language area.

6. CONCLUSION

We presented a new MEG-sensor weighting method using a
multiple kernel learning algorithm for analyzing areas of the
brain that contributed to the accurate decoding of two vow-
els. Our subject-independent (subject-open) analysis results
showed a high classification accuracy of 73.9% obtained in
the latency range between 100 and 200 ms, where we ob-
served strong MEG waveform peaks, for a two-vowel recog-
nition task. The classification accuracy of 73.9% obtained by
our MKL method was 3.5% higher than the best accuracy of
a conventional single kernel SVM. The brain area covered by
the MEG sensors with the larger weight obtained by our MKL
method corresponded to the language area of the left hemi-
sphere. As the magnetic fields generated by brain activity are
extremely weak and usually largely contaminated by exter-
nal magnetic noises, we will have to develop a noise-robust
feature extraction method.
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