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ABSTRACT
Accurate estimation of the blood flow velocity in ultrasound imaging
is an important tool for medical diagnostics. In this paper, we adopt
an improved empirical mode decomposition (EMD) framework
called ensemble EMD (EEMD). To reduce the errors caused by the
outliers in data when using a uniform weight in conventional EEMD,
a regularized LASSO EEMD algorithm is proposed to solve for the
multiple regression weights. An adaptive clutter rejection filter can
then be designed to remove the clutter components. According to
our simulation study, the proposed LASSO EEMD approach per-
forms better than the state-of-the-art eigen-based and EMD method
in estimating the blood flow velocity. Although the LASSO EEMD
derived filter only achieves slightly better results than the cubic
regression derived filters at most part of the simulated blood flow
center frequencies, the proposed LASSO EEMD algorithm achieves
much improved performance over cubic regression at extreme cases
when the blood flow center frequency is close to or much higher
than that of the clutter.

Index Terms— Blood flow velocity estimation, clutter rejec-
tion, empirical mode decomposition, LASSO, ridge regression

1. INTRODUCTION

As a non-invasive and high-level vascular visualization tool, ultra-
sound color flow imaging has been used for various types of cardio-
vascular flow studies over the past twenty years [1]. It is important
for these images to provide accurate blood flow velocity estimation
in medical diagnostics. As demonstrated in several evaluation stud-
ies, failure to provide accurate flow information may lead to an in-
creased risk of misdiagnosis and cause assessment difficulties dur-
ing long-term monitoring of patients [2]. However, there are several
factors that tend to reduce the accuracy of blood flow velocity es-
timation, namely: (i) the clutter signal originating from scattering
sources, such as tissues and vessel walls, makes the power ratio be-
tween the clutter and blood flow signals extremely large, often up to
40dB or more, and (ii) the available sample number of the Doppler
signals is often very limited, usually less than 20 pulses.

To suppress the strong clutter, polynomial regression filter
achieves better performance than the conventional digit filters be-
cause of its time-varying characteristics [3]. However, it is not
adaptive because it is often sensitive to the selection of the order
of the polynomials. Furthermore, when the clutter frequency shift
is large, the regression curve fails to approximate the real clutter,
even for clutters with light powers. To alleviate the above diffi-
culties, an adaptive filter is needed. An eigen-based clutter filter
generates the eigenvectors [4] or the orthogonal vectors of singu-
lar value decomposition [5] of the autocorrelation matrix. These
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orthogonal vectors are used as the basic function of the clutter sub-
space. Then the estimated clutter from the linear combination of
these basis functions is removed from the input. These methods are
carefully-designed in theory and perform well when the clutter is
non-stationary or consisted of multi-frequency components. It has
been demonstrated though that the above eigen-based methods are
sensitive to the choice of the clutter subspace dimension. So a data-
driven, frequency-energy based decomposition method to suppress
the clutter is required.

As a noise-assisted nonlinear and non-stationary data decompo-
sition method, empirical mode decomposition (EMD) and ensemble
EMD (EEMD) have been explored to solve the above problem [6].
Different applications have shown the effectiveness of this versatile
time-frequency analysis tool. However, each intrinsic mode function
(IMF) is often represented as the average of corresponding compo-
nents at different experiment trials. This fixed uniform weight is not
a reasonable choice since the existence of outliers in data. In this
paper a regularized EEMD to reduce decomposition errors, called
LASSO EEMD, is proposed. It can further be shown that the results
obtained with LASSO EEMD and EEMD are asymptotically equiva-
lent. Based on the proposed LASSO EEMD, a novel adaptive clutter
rejection filter can be designed. Overall the LASSO EEMD derived
filter achieves more accurate blood flow velocity estimation over the
state-of-the-art eigen-based and conventional EMD filter. Although
the LASSO EEMD derived filter only achieves slightly better results
than the cubic regression derived filters at most part of the simulated
blood flow center frequencies, the proposed LASSO EEMD algo-
rithm achieves much improved performance over cubic regression at
extreme cases when the blood flow center frequency is close to or
much higher than that of the clutter.

2. LASSO EEMD

In the following we briefly review the main concept of EEMD and
describe the proposed LASSO EEMD framework in detail. Finally,
an adaptive clutter rejection filter is designed.

2.1. Ensemble Empirical Mode Decomposition (EEMD)

EMD is an adaptive time-scale choosing scheme on extreme points
which is realized as a ”sifting” process [7]. The basis function ob-
tained in such a way is complete and almost orthogonal. In EMD,
an intrinsic mode function (IMF) is obtained by subtracting from the
input signal the average signal of the upper and lower envelops of
the input. The time-scale of each IMF is data-driven and increasing.
Based on this property, the first IMF represents the fastest-changing
component, while the last IMF and the residual are corresponding to
the slowest-varying component often with the highest energy. There-
fore EMD is regarded as a frequency-energy based signal decompo-
sition method such that the input signal x with length L is expressed
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as a vector:

x =

n∑
i=1

ci + rn, (1)

where ci denotes the ith IMF and rn is the residual. Much attention
has been paid to EMD once it was proposed. However, the major
drawback of EMD is the frequent appearance of mode mixing which
is defined as either a single IMF consisting of oscillations of dramat-
ically disparate time scales, or a component of a similar time-scale
residing in different IMFs. It could not only cause serious aliasing in
the time-frequency distribution, but also make physical meaning of
the individual IMF unclear. Specifically, if the frequency of a distor-
tion component is very close to that of an expected component, such
mode mixing often drastically degrades the filter performance.

To solve this problem, an adaptive data analysis method, called
ensemble empirical mode decomposition (EEMD), was introduced
and the robustness of the original EMD algorithm was significantly
improved. The EEMD procedure is realized in the following steps:

i) Add a white noise sequence to the targeted data xi = x+ ei;

ii) Decompose the revised data into IMF components;

iii) Repeat the previous two steps with different white noise se-
ries in each trial;

iv) Obtain the result as the mean of the N corresponding IMFs:

cj = lim
N→∞

1

N

N∑
k=1

cjk. (2)

When N = 1, the EEMD is regarded as EMD. Experimental re-
sults demonstrate that EEMD can ease the problem of mode mixing
[8]. However, a challenging issue is that the fixed uniform weight
for each element obtained by different trials is not as effective due
to the presence of outliers. To simplify the presentation we use the
following notations:

Y =
(

c1 c2 · · · cn
)T

, (3)

Z =

⎛
⎜⎜⎜⎝

c11 c12 . . . c1N
c21 c22 . . . c2N

...
...

. . .
...

cn1 cn2 · · · cnN

⎞
⎟⎟⎟⎠ . (4)

2.2. LASSO EEMD and Convex Programming

Next we propose a regularized framework reduce the estimation er-
rors of multiple regression weights often caused by data outliers. It
is called LASSO EEMD in short. For input signal x with length L,
the relationship between the result of EMD and that of the general
EEMD is modeled with a standard multiple linear regression model
as:

Y = Zβ + e, (5)

where β is N×1 weight coefficient and unknown. If each element of
β is unique and equal to 1/N , the model is simply the conventional
EEMD shown in Eq. (2).

Based on the unbiased and minimum variance properties, the
solution to Eq. (5) can be simply expressed as:

β̂ = (ZTZ)−1ZTY, (6)

where β̂ is the well-known least squares estimate, which is a good
one if the correlation matrix ZTZ is nearly a unity matrix with T

denoting the transpose of a matrix. However, if ZTZ is not nearly a
unity one, the least squares solution in Eq. (6) is sensitive to outliers
in data. To reduce the effect of outliers, a regularization term is
usually added to the objective function as follow,

β̂ = argmin
β

1

2
E(eT e) + λ

N∑
i=1

|βj |p

= argmin
β

1

2
(Y − Zβ)T (Y − Zβ) + λ

N∑
j=1

|βj |p. (7)

When p = 1, it is known as LASSO [9]. Although a closed form
solution is available based on ridge regression (p = 2) [10], LASSO
achieves less error for the general convex optimization problem.
However, there is no closed form solution to Eq. (7). For the jth

element of β, βj is often updated in an iterative manner by solving

β̂j = argmin
βj

⎡
⎣1
2

n∑
i=1

(
yi −

N∑
j=1

βjzij

)T (
yi −

N∑
j=1

βjzij

)

+λ
N∑

j=1

|βj |
]
. (8)

The solution can be computed explicitly in the first order case
by taking the derivative of the bracket term in the right hand side of
Eq. (8)

0 = −
n∑

i=1

zTij (yi − zijβj) + λsign(βj)

= −a+ bβj + λsign(βj), (9)

where

a =

n∑
i=1

zTijyj , b =

n∑
i=1

zTijzij .

By Karush-Kuhn-Tucker Theorem [11], if a ≥ 0,

βj =
a− λsign(βj)

b
=

{ (
a−λ
b

)
sign

(
a
b

)
a ≥ λ

0 otherwise
,

(10)

if a < 0,

βj =
a− λsign(βj)

b
=

{ (−a−λ
b

)
sign

(
a
b

) −a ≥ λ
0 otherwise

.

(11)

Combining Eqs. (10) and (11), the final solution is solved as:

β̂j =

(∣∣∣a
b

∣∣∣− λ

b

)
+

sign
(a
b

)
, (12)

where (x)+ =

{
x x ≥ 0
0 x < 0

.

Based on the obtained β, the input signal is decomposed as

x =

n∑
i

N∑
j

β̂jcij . (13)
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2.3. Clutter Suppression Filter Design

In this following section, an adaptive clutter suppression filter is de-
signed based on the proposed LASSO EEMD solution obtained in
Eq. (12). The input Doppler signal x is composed of

x = b+ c+ n, (14)

where b is the blood flow component, c denotes the clutter and n is
the noise [12]. The length of input signal is L = 16. So the number
of IMFs is determined by the logarithm of signal length, which is
3 (excluding the residual) in the whole proceeding of the LASSO
EEMD filter design.

x = c1 + c2 + c3 + r. (15)

In this representation, the first IMF c1 represents the high fre-
quency blood flow component. While the last IMF c3 and residual
r are the low-frequency component with the strongest energy. c3
is regarded as the clutter and to be removed from the input signal
by the clutter suppression filter. The second IMF, c2, is regarded
as the mixture of the blood flow and clutter, which is then decom-
posed by LASSO EEMD again. Another set of three IMFs are then
obtained. Then the same procedure is repeated until enough com-
ponents are obtained. At each layer of the decomposition, the first
IMF is summed with the previous blood flow component. Finally
the output u after filtering is formalized as

u = 1c1 + 2c1 + · · ·+ kc1, (16)

where kci represents the ith IMF at the kth LASSO EEMD imple-
mentation stage and 1c1 = c1.

3. SIMULATION AND EXPERIMENTAL RESULTS

As stated in previous studies [13], the distribution of the frequency
and power for clutter, blood flow signal, and low level random noise
can be summarized in Figure 1. It is found that the clutter is usu-
ally of low frequency and high power with a narrow bandwidth. On
the contrary, the flow component is in high frequency and at low
power. Furthermore the random noise is with a wide bandwidth but
low power. So the simulation signals are carefully designed based
on the characteristics of these three components. In the following
set of experiments, the simulation model utilized here is originated
from the above-mentioned Doppler mask. To keep the input param-
eters manageable, some parameters are given and fixed throughout
the simulation, while others of a great interest are varied. Table 1
lists the parameters and their values. In the following, all frequency
values are stated as fractions of the pulse repetition frequency (PRF).
Of special interest is the row labeled ”flow center frequency” which
varies from 0.075PRF, a value close to the fixed clutter center fre-
quency of 0.01PRF, to 0.5PRF, a value much larger than the fixed
value of 0.01PRF. A total of 18 flow center frequencies were used.

The velocities estimated respectively by the regression filter of
different orders, eigen-based filter of different clutter subspaces,
EMD and LASSO EEMD filters are plotted in Figure 2 as a function
of the varying blood flow center frequency as described in the sim-
ulation. For the eigen-based filters, two methods of different clutter
subspace dimension are presented. In the simulation, the dimension
of the clutter subspace is spanned by 3 and 4 basis functions, which
are denoted as ’eigen-based3’ and ’eigen-based4’, respectively,
throughout the remainder of the paper.

It was noted that the quadratic regression filter failed to sup-
press the clutter effectively. The cubic regression could approximate

Fig. 1. Frequency distribution used for Doppler signal simulation

Table 1. Parameters Used for the Simulation
Parameter Value(s)

clutter bandwidth 0.02 PRF
clutter center frequency 0.01 PRF
clutter-to-flow signal power ratio 40 dB
flow bandwidth 0.1 PRF
flow center frequency fb 0.075 to 0.5 PRF

in the steps of 0.025 PRF
flow-to-noise power ratio 10 dB
number of sample per Doppler ensemble 16

the clutter better than quadratic regression with less deviation. Al-
though the filter with low-dimension clutter subspace achieved more
accurate velocity estimation than the those with high-dimension clut-
ter subspace, the eigen-based methods caused negative deviation for
blood flow velocity estimation. Compared with the above quadratic
regression and eigen-based methods, EMD filter showed a better per-
formance. However, it caused large negative deviation when the cen-
ter frequency of the flow component was close to that of the clutter.
As a result, the filtered output signal contained some clutter informa-
tion which degraded the filter effect. Compared with the EMD filter,
the LASSO EEMD derived filter achieved more accurate velocity
estimation. Furthermore, the LASSO EEMD reduced the effect of
mode mixing which led to the presence of the clutter and blood com-
ponents in different IMFs. On the other hand, the LASSO EEMD
filter produced more IMFs which led to a filter that achieved a bet-
ter separation. To clearly demonstrate these results, we calculated
the mean absolute velocity estimation error eoverall over the all the
competing methods, and list them in Table 2.

eoverall =
|fb − f̂b|

Nb
, (17)

where f̂b is the estimated flow center frequency and Nb is the number
of simulated flow center frequencies, which was 18 in our case.

It was also found that the LASSO EEMD derived filter achieved
some improvements in blood flow velocity estimation over all com-
peting filters. Although LASSO EEMD only obtained a slightly bet-
ter result than that in cubic regression filters for the overall mean
absolute error, it outperformed cubic regression when the center fre-
quencies of the blood flow and the clutter are close to each other.
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Fig. 2. Blood flow velocity estimation for narrowband clutters

Table 2. Overall Mean Error comparison

Methods Overall Mean Error

Quadratic regression 1.3034
Eigen-based4 1.0828
Eigen-based3 0.6724
EMD 0.4154
Cubic regression 0.1730
LASSO EEMD 0.1488

This is shown in Table 3, where we pinpoint a few frequency com-
ponents to show the effectiveness of the LASSO EEMD derived fil-
ters for the center frequency of the blood flow with values at 0.075,
0.275 and 0.5 PRF. Comparing the values listed in the rows labeled
as ”Cubic regression” and ”LASSO EEMD”, it clearly showed that
LASSO EEMD gained a larger improvement than cubic regression
when the center frequency of the blood flow was 0.075 and 0.5 PRF,
two extreme situations for the flow center frequency either very close
to or much larger than the clutter center frequency.

4. CONCLUSION

In this study, a multiple regression model for general EEMD is first
established. Next a regularized LASSO EEMD is proposed to re-
duce the impact of outliers in the data. Finally a standard convex op-
timization procedure is formulated to obtain the multiple regression
weights so that an adaptive clutter suppression filter can be designed.

Experimental results demonstrate that the proposed LASSO
EEMD derived filter achieves less velocity estimation errors when

Table 3. Pinpoint Frequency Components Error Comparison

Methods 0.075(PRF) 0.275(PRF) 0.5(PRF)

Quadratic regression 0.0020 0.0647 0.4701
Eigen-based4 0.0130 0.0134 0.4467
Eigen-based3 0.0549 0.0301 0.4399
EMD 0.0639 0.0043 0.0020
Cubic regression 0.0470 0.0063 0.3229
LASSO EEMD 0.0221 0.0001 0.0001

compared with the filters obtained with other competing methods
across the entire range of the flow center frequencies simulated.
For the overall mean error, the LASSO EEMD derived filters only
performs sightly better than cubic regression. However for low and
high flow center frequencies LASSO EEMD achieves much better
results than cubic regression.

The proposed filter has a great potential to numerous fields of
applications. It does not only suppress the clutter, but also removes
other category of noise from Doppler imaging.
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