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ABSTRACT 

 

This paper describes an adaptive algorithm for selecting per-
electrode stimulus intensities and inter-electrode stimulation 
phasing to achieve desired isometric plantar-flexion forces 
via asynchronous, intrafascicular multi-electrode stimulation. 
The algorithm employed a linear model of force production 
and a gradient descent approach for updating the parameters 
of the model. The adaptively selected model stimulation 
parameters were validated in experiments in which 
stimulation was delivered via a Utah Slanted Electrode 
Array that was acutely implanted in the sciatic nerve of an 
anesthetized feline. In simulations and experiments, desired 
steps in force were evoked, and exhibited short time-to-peak 
(< 0.5 s), low overshoot (< 10%), low steady-state error     
(< 4%), and low steady-state ripple (< 12%), with rapid 
convergence of stimulation parameters. For periodic desired 
forces, the algorithm was able to quickly converge and 
experimental trials showed low amplitude error (mean error 
< 10% of maximum force), and short time delay (< 250 ms). 
 

Index Terms— Gradient Descent, Neuroprosthesis, 
Functional Electrical Stimulation, Animal Models. 
 

1. INTRODUCTION 
 

Functional Electrical Stimulation (FES) has been clinically 
employed to restore lost neuromuscular function due to 
spinal cord injury or other neural deficits. Electrical 
stimulation applied to nerves can evoke forceful 
contractions of paralyzed muscle resulting in functional 
movement. However, current clinical FES methods to 
control muscle function rely on high-frequency, single-
electrode surface or extraneural stimulation, which has 
limited force scalability and can lead to rapid fatigue [1].  
 Recent advances in high-channel-count peripheral nerve 
interfaces, such as the Utah Slanted Electrode Array 
(USEA), allow for selective activation of large numbers of 
motor-unit groups within a single muscle [2]. Graded force 
production can be achieved by modulating the stimulus 
intensity delivered to an implanted electrode, thus activating 
more or less motor-unit groups. Relatively high-frequency 
muscle contractions are required to evoke smooth tetanic 
forces [3]. When stimulating via only one electrode, this 

high-frequency stimulation leads to rapid muscle fatigue. 
Because multi-electrode arrays allow for selective access to 
unique populations of motor-unit groups within a single 
muscle, asynchronous stimulation via multiple independent 
electrodes at a low per-electrode frequency, but high 
composite frequency, can evoke smooth, fatigue-resistant 
muscle contractions [1, 4]. 
 Asynchronous Multi-Electrode Stimulation (AMES) 
poses unique challenges, especially in the determination of 
stimulation parameters—per-electrode stimulus intensities 
and inter-electrode stimulation phasing—that will evoke 
smooth, precise motor function. Algorithms have been 
developed that can predict the dynamic muscle response to 
single-electrode stimulation [5], but these models have not 
been extended to AMES. Adaptive algorithms have been 
used to determine optimal inter-electrode phasing for AMES 
that can evoke smooth static isometric forces [4, 6], and 
other algorithms have been designed to determine per-
electrode stimulus intensities to evoke precise periodic joint 
torques [7]. Recently, we have investigated closed-loop 
force-feedback control that modulates per-electrode 
stimulus intensities to evoke any desired force trajectory, 
using asynchronous IntraFascicular Multi-electrode 
Stimulation (aIFMS) [8]. However, we are unaware of any 
method that can adaptively determine both per-electrode 
stimulus intensities and inter-electrode stimulation phasing 
to evoke smooth, precise, arbitrary force trajectories. 
 Here we present a gradient descent adaptive filtering 
method that can determine per-electrode stimulus intensities 
and inter-electrode stimulation phasing by minimizing the 
difference (error) between any desired force trajectory and 
an estimate of aIFMS evoked forces. Stimulation parameters 
were adaptively determined in open-loop simulation and 
then validated with experimental stimulation, as a first step 
towards developing a real-time closed-loop method. The 
simulations and subsequent experimental results show 
successful production of desired isometric force trajectories. 
 

2. ADAPTIVE PARAMETER SELECTION 
 

Single-pulse stimulation via a single USEA electrode 
evokes a twitch response in force, Fig. 1a, and graded force 
production can be achieved by modulating the stimulus 
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intensity (i.e., the stimulus duration), Fig. 1b. For stimulation 
via each utilized electrode, there is a known normalized, 
characteristic twitch-force response to a single stimulus, 
xi(t). Our algorithm uses these characteristic responses in a 
linear summation model of aIFMS force production: 
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where ai,j is the stimulation intensity for electrode i during 
stimulation cycle  j, τi,j is the stimulation time, M is the total 
number of stimulating electrodes, and K is the total number 
of stimulation cycles. 

 For each electrode, we want to determine the 
stimulation parameters, a and τ, that will minimize the 
difference (error) between a desired force trajectory, Fd(t), 
and the estimated evoked forces, Fe(t), where 
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For each stimulation, the cost function to be minimized is 
set as 
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where the interval of interest is between the time when the 
twitch-force response initially rises above 25% of the 
maximum response, T1, and the time when the twitch-force 
response drops below 25% of the maximum response, T2. 
These bounds are used because this is the time window 
when the majority of the twitch-force response occurs, and 
when the majority of changes in Fe(t) are due to stimulation 
via the corresponding electrode, Fig. 1a. For each 
stimulation, T1 and T2 are set as 
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where γ1 and γ2 are as shown in Fig. 1a.  
 Gradients of the cost function based on stimulation 
intensity, a, and stimulation time, τ, are determined: 
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The parameters for the subsequent cycle of stimulation are 
updated as 
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where oi,j is the offset time between stimulation via the prior 
electrode (i-1) and the current electrode (i), and η is the rate 
of adaptation, independently set for each stimulation 
parameter, a and τ. The stimulation parameters for each 
electrode are iteratively determined for each subsequent 
cycle of stimulation by looking backwards in time at the 
bounded estimated force response during the previous cycle 
of stimulation, Fig. 2. After the subsequent cycle of 
stimulation parameters are updated for each stimulating 
electrode, the force estimation model is updated, Fig. 2.  

 
3. METHODS 

 

Experiments were conducted on an adult male feline using 
procedures approved by the University of Utah Institutional 
Animal Care and Use Committee. The initial experimental 
methods are fully described in [8], and are briefly described 
below. The feline was anesthetized and mechanically 

Fig. 1. (a) Stimulation was delivered to a single USEA electrode at
a stimulus duration that would evoke 25%, 50%, and 75% of the 
maximum possible twitch force, as determined from (b). The
normalized twitch-force responses show stimulus duration 
invariant kinetics, which is desirable for this study.  γ1 and γ2, the
cost function bounds, are marked for this characteristic twitch-
force response. (b) Typical twitch-force recruitment map, showing
the relationship between delivered stimulus duration and evoked
peak twitch-force, and the bounds of useable stimulus durations. 

Fig. 2. The first cycle of algorithmic parameter determination is 
shown for a simulation of 6-electrode, 36-Hz asynchronous
stimulation, where all twitch-response kinetics are similar. The
desired force was a 4-N step function. The initial cycle of
stimulation was estimated. The algorithm then determined the 
stimulation intensity (increase) and timing (decreased offset) for 
the second cycle of stimulation via the first electrode by looking 
backwards in time at the linear model of estimated force during the
first stimulation cycle. The second cycle of stimulation via the first 
electrode with adapted parameters is shown by the larger twitch-
response due to stimulation at t = 0.161 s. 
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ventilated. Vital signs were monitored and recorded to 
assess the depth of anesthesia and animal status. 
  A 100-electrode USEA was implanted in the left sciatic 
nerve. The animal was placed in a prone position in a rigid 
trough with its hind limbs suspended. The metatarsal-
phalangeal joint of the animal’s left foot was secured to a 
six degree-of-freedom load cell (model Gamma-US-15, 
ATI, Apex, USA) via plastic ties. Bone pins were inserted in 
the left tibia and fixed to the surgical table, to ensure that all 
forces generated by plantar-flexor muscles were isometric. 
The magnitude of the evoked ground reaction force vector 
was used as the force response for all experiments. 
 Monophasic electrical stimulation was delivered using a 
custom-built, multi-channel, constant-voltage stimulation 
unit [9] at a voltage of -4 V, using stimulus durations 
between 0.2 μs and 512 μs with 0.2-μs resolution. Twitch-
force recruitment maps were generated for all electrodes that 
generated a peak force greater than 0.5 N in response to a 
single 256-μs stimulus, Fig. 1b. The pair-wise level of 
axonal activation overlap was measured for all electrodes 
whose stimulation evoked fast-twitch plantar-flexion [1].  
 Six electrodes were chosen for simulation and 
experimental stimulation from those having the smallest 
pair-wise overlap, low activation thresholds and strong 
maximum peak twitch force as determined from recruitment 
maps (Fig. 1b), and from those having similar normalized 
force response kinetics at all possible stimulus durations 
(Fig. 1a).  For each of these six electrodes, the normalized, 
characteristic twitch-force response, xi(t), was determined as 
the normalized twitch-force response to the stimulus 
duration that evoked 50% of maximal twitch-force.  
 Simulations were performed using MATLAB software 
(The Mathworks, Natick, USA). Initial stimulation 
intensities were set to Fd(0)/M, where M was the total 
number of stimulation electrodes, and initial inter-electrode 
timing offsets were set to 1/fc, where fc was the desired 
composite frequency in Hertz. Both intensity and offset 
were bounded. The minimum allowable stimulation 
intensity was zero, and the maximum allowable stimulation 
intensity via each electrode was determined from initial 
twitch-force recruitment mapping, Fig. 1b. The minimum 
and maximum allowable offset times were set as 0.5 times 
and 1.5 times the initial offset (1/fc). The derivative in (6) 
was numerically determined from a smoothed model of the 
characteristic twitch-response, xi(t). 
 Adaptation gains, ηa and ηo, were tuned through 
iterative simulations to find the gains that produced steps in 
force with adequate response characteristics (short time-to-
peak, low overshoot, low steady-state error, and low steady-
state ripple), which are defined as follows. Time-to-peak, 
Tp, is the time from force step onset to peak evoked force.  
Percent overshoot, %OS, is the percent difference between 
the peak evoked force and the mean evoked steady-state 
force, measured during the last 0.25 s of stimulation.  
Steady-state error, SSE, is the difference between the desired 
force and the mean evoked steady-state force. Steady-state 

ripple, SSR, is the difference between the peak-to-peak 
evoked force during the last 0.25 s of stimulation and the 
mean evoked steady-state force. The SSR metric is 
important for multi-electrode stimulation because it is a 
characteristic of the smoothness of the evoked forces. 
 For periodic desired forces, the adaptation gains were 
tuned to produce forces with minimal amplitude error, EA.  
To determine EA, the evoked forces were shifted backwards 
in time until the sum of the squared per-sample difference 
between the time-shifted forces and desired force trajectory 
was a minimum. EA is the square-root of this squared per-
sample difference. The time shift was also measured as a 
time delay metric of the response, Td.  
 After parameter sets were determined in simulation, 
stimulus intensities were converted to useable stimulus 
durations via recruitment maps (Fig. 1b). This was 
necessary because the recruitment map for each electrode is 
a nonlinear function with varying characteristics. Because 
stimulation via the chosen electrodes did not activate 
completely independent motor-unit groups, and because 
muscle contractions do not combine linearly [10], an 
additional gain factor of 0.6 (determined experimentally) 
was applied to the stimulus intensities prior to stimulus 
duration conversion (see Discussion). Electrical stimulation 
was delivered via the six chosen USEA electrodes through 
custom MATLAB software. Experimental responses were 
evaluated on the same metrics as simulations. 
 

4. RESULTS 
 

All experimental stimulations were conducted using six 
electrodes with an initial composite frequency of fc = 36 Hz. 
In simulation, desired steps in force were achieved with 
short Tp (425 ms), low %OS (7.5%), low SSE (-1%), and 
low SSR (10%), Fig. 3. Experiments, using the stimulation 
parameters determined in simulation, evoked similar results 
(Tp = 445 ms, %OS = 7.6%, SSE = 3%, SSR = 11%), Fig. 3. 
The maximum instantaneous per-electrode stimulation 
frequency was 6.9 Hz, and the steady-state converged 
composite frequency was 40.2 Hz. 
 Periodic force trajectories were achieved in simulation 
with low amplitude error (EA = 0.06 ± 0.04 N, mean ± SD) 
and short time delay (Td = 215 ms), Fig. 4. Experimental 
stimulation evoked periodic forces with slightly larger 
amplitude error than simulation (EA = 0.28 ± 0.21 N), but 
similar time delay (Td = 224 ms), Fig. 4. The maximum 
instantaneous per-electrode stimulation frequency was 7.2 
Hz. Higher frequency desired force trajectories were 
achieved with similar amplitude errors and time delays (data 
not shown).  
 More complex time-varying force trajectories were also 
achieved in simulation with low amplitude error (EA  = 0.11 
± 0.08 N) and short time delay (Td = 208 ms), Fig. 5. 
Experimental stimulation evoked forces with slightly larger 
amplitude error (EA  = 0.34 ± 0.22 N), but similar time delay 
Td = 222 ms), Fig. 5. The maximum instantaneous per-
electrode stimulation frequency was 7.1 Hz. 
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5. DISCUSSION 

Experiments described in this paper demonstrated that 
complex isometric force trajectories can be successfully 
achieved with aIFMS. Other algorithms may be able to 
evoke smooth static muscle forces or periodic joint torques 
[4, 6, 7], but our approach has the benefit of being able to 
determine all stimulation parameters for any desired forces, 
including completely arbitrary trajectories.   

One difficulty with this method is the offline tuning of 
adaptation gains, ηa and ηo. It would be beneficial to have 
automated gain parameterization to determine optimal 
stimulation parameters. Experimental stimulation required 
an additional stimulation intensity gain factor of 0.6, which 
was determined experimentally. Contractions of multiple 
motor-unit groups do not combine in a completely linear 
manner [10], and we are unaware of a good model for the 
specific interaction of stimulation via multiple intrafascicular 
electrodes. Although aIFMS can evoke fatigue-resistant 

force, fatigue will eventually occur in muscle fibers even at 
low stimulation frequencies [1]. Long term stability of the 
algorithm has not yet been experimentally evaluated. Real-
time implementation of the algorithm with closed-loop 
feedback of the force error signals [8] should enhance the 
ability of the algorithm to compensate for modeling errors 
and time-variations in the force generation mechanism. 
Future work will investigate better force generation models 
as well as closed-loop adaptation of the stimulation 
parameters in the experiments. 
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Fig. 3. A 4-N desired step in force was successfully evoked in 
simulation and with experimental stimulation. 

Fig. 5. A 4-N composite of sinusoids, desired force trajectory was
successfully evoked in simulation and with experimental
stimulation. Again, experimental results had slightly larger 
amplitude errors than simulation results. 

Fig. 4. A 4-N, 0.25-Hz sinusoidal desired force trajectory was 
successfully evoked in simulation and with experimental
stimulation. Experimental results had slightly larger amplitude 
error than simulation results. 
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