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ABSTRACT 

 
A novel iterative adaptive filtering approach is proposed to 
remove the Transcranial Magnetic Stimulation (TMS) 
induced artifact from multi-channel recordings of neural 
responses to sensory stimuli. For each specific channel, the 
average of all trials is considered as the input to the adaptive 
filter whose coefficients are calculated by minimizing the 
mean square error between the voltage trace of that trial and 
the filter output.  The residues of all trials serve as an initial 
estimate of the neural response. Once this estimate is 
calculated, the input of the adaptive filter is modified by 
subtracting the mean residue. It is shown that the modified 
input provides a better estimate of the mean TMS artifact, 
which serves the input of the adaptive filer, in the next 
iteration. Therefore, new filter coefficients are estimated in 
the next iteration, for each single trial, and the procedure 
continues till no considerable changes in the residues occur. 
We report a quantitative verification of the accuracy of our 
method by generating a controlled simulation. Furthermore, 
applying the algorithm to experimental data confirms the 
accuracy of our approach and its usefulness for extracting 
neurophysiological responses occurring in temporal 
proximity to TMS pulses. 
 

Index Terms— Transcranial Magnetic Stimulation, 
TMS Artifact Removal, Neurophysiological recordings, 
Adaptive Filtering 
 

1. INTRODUCTION 
 
Transcranial magnetic stimulation (TMS) is a technique that 
locally depolarizes neurons in the brain using rapidly time 
varying magnetic fields generated by a coil positioned in 
close proximity to the head [1]. TMS has been and is vastly 
used to study brain function and the relationship between 
brain and behavior. It is currently being used to treat 
depression, and thought to have potential for therapy of 
other psychiatric disease, e.g. schizophrenia. In order to 
understand the neurophysiological mechanisms underlying 
TMS, it needs to be combined with neurophysiological 
recordings of Local-Field Potentials (LFPs) and action 
potentials. However, this is difficult, due to artifacts caused 

by the changing magnetic fields that induce currents in the 
recording electrodes, connecting wires and pre-amplifiers 
inherent to any neurophysiological recordings system.  
TMS causes high amplitude and long lasting artifacts which 
interferes with neurophysiological recordings. Two 
strategies have been proposed for solving this problem, 
including real-time/online and offline strategies. Real-time 
methods include two techniques. The first uses sample and 
hold circuits to keep constant the output of the amplifiers 
during the TMS stimulation and relax it for the rest of time 
[2]. The second turns off the amplifiers for 10ms centered 
on the TMS stimulation. The main problem of such 
techniques is that the neurophysiological data cannot be 
recorded in proximity to the TMS pulses. In addition, 
designing complex electrical circuits for this strategy is 
expensive [3]. The alternatives to online methods are offline 
approaches based on signal processing techniques.  [4] and 
[5] proposed a simple method to remove TMS artifact from 
EEG recordings by subtracting the mean artifact. This is an 
ineffective solution since the artifact is statistically non-
stationary. Therefore, adaptive filtering approaches, which 
can properly track the TMS variations, are the candidates to 
come up with this problem. [1] proposed an offline Kalman 
filter approach, using time-varying covariance matrices, to 
remove TMS-induced artifacts from EEG recordings. In this 
paper, we propose an offline iterative adaptive filtering 
approach to remove TMS artifact from neurophysiological 
recordings of LFPs.  
This paper is organized as follows, In Section 2, the problem 
of the TMS induced artifact in neurophysioligical data is 
stated. Our proposed algorithm for solving such a problem is 
then described in Section 3. Finally, in Section 4, the 
simulation and experimental study are carried out, 
demonstrating the accuracy and robustness of our proposed 
algorithm. 
Notation: Bold lower case letters stand for real column 
vectors. 
 

2. PROBLEM STATEMENT AND ASSUMPTIONS 
 
For each channel, Assume sigi denotes the voltage trace of 
the ith trial of the recorded signal i.e., as conventionally 
assumed, the combination of the corresponding TMS 
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artifact, tmsi, neural response to a sensory stimulus neuri, 
and white noise, ni, i.e., 

                            
                                 sigi = neuri + tmsi+ni                       (1) 
Assuming that: 
 

1- The sensory stimuli are given in different times 
relative to the TMS across trials, meaning that the 
neural responses in different trials are not aligned 
in time, thus they do not add in phase. 

2- The neural signal, for each single trial, can be split 
into a deterministic response to the sensory 
stimulus, and a stochastic part i.e., 
 

to sensory stimulus 
 
 
where

iDneur and
iSneur denote the deterministic 

and stochastic part of the neural response, 
respectively. It is assumed that the deterministic 
parts of the neural responses, for each specific 
channel, in all trials of the same stimulus are 
similar but not identical. And the stochastic parts 
are assumed, for the sake of simplicity, to be a 
white noise. 

3- TMS artifact is non stationary but similar for all 
trials. 

4- TMS artifact and the neural response are 
uncorrelated. 

The objective is to estimate the neural response of each 
channel for each trial.  

3. PROPOSED METHOD 
 
As far as the assumptions 1 and 2 hold, the average of the 
neural responses over all trials approaches zero if N (number 
of trials) approaches infinity, hence it is reasonable to expect 
that the mean voltage trace of all trials, sig , for each 
channel, which contains the mean TMS artifact and the 
mean neural response can be served as the input of the 
adaptive filters designed for the corresponding channel’s 
trials. The term “adaptive” is employed because the filters 
input adaptively tracks different trial traces of each channel. 
We aim to estimate filter vi = [vi(1)  . . . vi(2q+1)]T, for ith 
trial, such that; 
                         (2)      
 
where, )](...)([)( qnsigqnsign iiisig and 

)](...)([)( qnsigqnsignsig .  

As shown in Fig.1, the filter’s input (in the first iteration), 
for all trials, is 

iall
iN

sigsig 1 . The mean least square 

solution for (2) is; 
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vector. L represents the length of each single trial (assuming 
that the length of all trials is same). 
According to assumption 4, the residue of the ith trial, resi, 
would be an estimation of the neuri and can be expressed as: 
               

            (4) 
By replacing (1) in (4), we will have: 
 
             (5) 
 
Assuming that 0)()( nntms T

ii tmsv the residue will be: 
     (6) 

As we can see, for each trial, the residue is distorted by
)()( nnn i

T
i neurv . We propose an iterative method to 

reduce this distortion, for each single trial, once the residue 
of all trials estimated. Let us express the error between the 
pure neural response and the residue as follow: 

)()()()()( nnnnresnneurnerror i
T
iiii neurv     (7) 

The technique we use in this paper, as depicted in Fig 1, 
subtracts the residue of each trial from the corresponding 
voltage trace, sigi, obtaining a better estimation of the TMS 
artifact, tmsi, averaging over all trials and using this 
average, tms , as the new input of the adaptive filter, in the 
next iteration.  
 
 
 
 
 
 
 
 
 
Figure 1. Block diagram of the proposed iterative algorithm, 
in the kth iteration, for TMS artifact removal.  
 
Apparently, better estimation of the mean TMS artifact, as 
the filter’s input, leads to better estimation of the neural 
response, as the residue. Accordingly, using (1), (6), (7), the 
input of the next iteration can be written as: 
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Hence, this new input contains the mean error which is 
negligible in comparison with the mean artifact. In other 
word, this technique ensures that the fit between the residue 
and the original neural response in each iteration is no worse 
than that in the previous one. Our algorithm is summarized 
as below; 

Algorithm 
 
Step 1) set k=0; (k represents the number of iteration) 
           res[k]=0 
Step 2) k = k + 1; 
            
 
 
 
 
Step3) ][][][ kk

ii
k input*vsigresi  

            if k=1, go to step 2,  

            else calculate %1002

2

]1[

2

2
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res

resres  

Step 4) if %5E , for all trials (i), then stop the algorithm, 
            else go to step 2. 
 

4. SIMULTIONS & EXPERIMENTAL RESULTS 
 
Our dataset includes recordings of 5 channels obtained in-
vivo from intra-cranial electrodes within the somatosensory 
region S1. The recording electrodes were right below the 
center of a 70 mm figure-of-8 TMS coil. Recordings were 
pursued using a multi-channel neurophysiological system 
(Tucker-Davis Technologies, Alachua, FL). For each 
channel, there are three classes of data (Fs = 24,414 Hz); 1- 
TMS only, 2- median nerve stimulation only, and 3- TMS 
combined with median nerve stimulation at different time 
lags between them (-250:5:250 ms). Each data set contains 
100 trials, each lasting approximately 10s. In the trials in 
which median nerve stimulation takes place (either alone or 
with TMS), the median nerve stimulus pulse is right in the 
middle of the trial. In trials where only TMS happens, the 
TMS pulse is also in the middle of the trial. We perform our 
algorithm separately for each channel. Firstly, for the 
simulation case, we added the median nerve (neural) 
responses (data class 2) for each channel to the data with the 
TMS artifacts (data class 1) on a trial by trial basis, such that 
the onset of the TMS artifacts are triggered and the neural 
responses is randomly distributed between -250:5:250 ms 
relative to the TMS pulse, in order to satisfy the first 
assumption. The aim is to remove the artifact of each 
channel, trial by trial, and compare the result with the 
corresponding neural responses in trials with no 
interference. For each trial, the correlation coefficient M1, 
the quantity that gives the quality of a least squares fitting 
[6], between the estimated and original neural response is 
calculated and then averaged over all trials of each channel 
to indicate the mean similarity between the estimated and 
non-interfered neural response. 
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However, as the information of the neural responses in the 
interval between their onsets and 100ms after is of our 
interest, the second measurement M2 is calculated in a 
manner similar to M1 but in this interval. The results of M1 
and M2 for all tested channels are shown in table I.   
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where li is the length of ith trial 100ms after the electrical 
stimulation. The onset of each trial is equal to the onset of 
the TMS artifact. The filter order is 23 (q=11) in our 
algorithm for both simulations and experiments. Fig 2.A 
shows a selected part of our simulation for channel #55. Fig 
2.B shows the estimated neural response after TMS artifact 
removal versus the original one. One trial of the estimated 
and the original neural responses is magnified in Fig 2.C.  
The deterministic part (red window in Fig 2.C) of this neural 
response (100ms after onset), for both estimated and 
original, is depicted in Fig 2.D. 
 
 
 
 A) 
 
 
 
 
 
 
 B) 
 
 
 
 
 
 
  
C) 
 
 
 
 
 
 
 D) 
 
 
 
 
Figure 2. A, Part of the simulation; the combined TMS and 
neural response of channel #55. B, the original versus 
estimated neural response after TMS artifact removal. C, a 
magnified trial of part b. D, the deterministic part of the 
neural response, of the trial of part C.   

150 151 152 153 154 155 156 157 158 159

-1

0

1

2
x 104

Time(sec)

uV

 

 
original neural response
estimated neural response

150.61 150.62 150.63 150.64 150.65 150.66 150.67 150.68

0

5000

10000

15000

Time(sec)

uV

 

 
original neural response
estimated neural response

TT inputsiginputinput

v

ressiginput

][][][][][

][1][][

]1[][

)()(,)()(

,
k

i
k

i
kkk

k
i

kk
i

kk

nnEPnnER

PR

80 100 120 140 160 180
-5

0

5

10

15

20
x 104

Time(sec)

uV

 

 
original neural response
estimated neural response

80 100 120 140 160 180
-5

0

5

10

15

20
x 104

Time(sec)

uV

751



TABLE I, Results M1 & M2 for the simulation case 

 
Secondly, as the experimental case, our algorithm is applied 
to the combined TMS and neural responses; the third class 
of our dataset. Although, according to the recording 
strategy, the electrical pulses are right in the middle of trials 
and TMS onset varies around the middle of trials (between -
250ms to 250 ms), since we segment 5s before and 5s after 
the TMS onsets the first assumption still holds. Since there 
is no original neural response to compare the accuracy of the 
estimated neural response after TMS artifact removal, the 
average of the estimated neural response, for each channel, 
is calculated over all trials to represent the mean neural 
response of each channel. This signal is then compared, in 
term of correlation coefficient, with the mean neural 
response of the corresponding channel in the absence of 
TMS artifact (second class of dataset). The comparisons are 
reported in table II. Fig 3 shows a selected part of our 
experimental data for channel #64, before (up) and after 
(middle) TMS artifact removal. The mean estimated neural 
response versus the mean neural response in the absence of 
TMS artifact is plotted for the 100 ms after electrical 
stimulation in Fig. 3 (bottom).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 3. a selected segment of the recordings of neuron # 
64, combined with TMS (up), after TMS artifact removal 
(middle), and the mean estimated neural response versus the 
mean neural response in the absence of TMS artifact 
(bottom). 

TABLE II, Results of 1 & 2 for the data obtained 
experimentally 

 
Where 1 and 2 are the correlation coefficients for the entire 
and 100 ms of the trial length, respectively. As can be seen 
in the both simulation and experimental cases, the results, in 
term of the mean similarity between the estimated neural 
response and original neural response are promising. 
However, it is noteworthy to remember that we expect some 
differences, in the experimental case, between the estimated 
neural responses and the clean ones (with no TMS) which 
might be originated from the TMS actions in the neural 
responses.  
 

5. CONCLUSION 
 
We have presented a novel iterative adaptive filtering 
approach for removing the TMS induced artifact from the 
recordings of the neural responses to the electrical stimuli. 
The proposed algorithm is applied to both simulation and 
experimental data. In simulation, the similarities between 
the estimated and original neural responses over all trials 
demonstrate encouraging results. Furthermore, experimental 
results confirm the accuracy of our approach especially in 
order to preserve the first 100 ms (after the onset) of the 
neural response.  
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        Channel 
Similarity 

#3 #22 #35 #55 #64 

M1  0.65 0.68 0.69 0.69 0.70 
M2  0.85 0.92 0.92 0.93 0.92 

        Channel 
Similarity 

#3 #22 #35 #55 #64 

1  -0.23 0.65 0.59 0.67 0.60 
2  -0.34 0.83 0.80 0.81 0.85 
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