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ABSTRACT

Communication between cortices mediated by deep brain

structures such as the amygdala and fusiform gyrus has been

suggested to explain the enhanced perception of stimuli bear-

ing emotional content or having facial features. In this paper,

we analyze the dependence structure of the relevant brain

regions to assess their connectivity in response to a facial

stimulus, and to discriminate it from a mock stimulus. The

proposed approach treats the brain as a graphical network

where vertices correspond to locations of electroencephalo-

gram (EEG) recordings, and weights of the edges correspond

to dependence values. We employ a novel measure of de-

pendence, called generalized measure of association (GMA),

due to its underlying simplicity, and compare its performance

against Pearson’s correlation. The performance is assessed

in terms of the discriminability between the face and mock

stimuli. We observe that GMA successfully exhibits higher

dependence in regions that might reflect the activity of the

amygdaloid complex and the right fusiform gyrus when the

stimulus is face. Furthermore, the distributions of the depen-

dence values show that GMA also achieves a better separation

between face and mock, compared to correlation.

Index Terms— Brain Connectivity, Dependence Mea-

sures, Electroencephalograhy (EEG), FIR Least-Square Fil-

ter, Generalized Measure of Association.

1. INTRODUCTION

Graph theoretical methods have been proposed as a tool to

analyze structural, functional and effective brain connectivity

[1], where vertices correspond to brain regions or neurons,

and edges represent synapses or paths of pronounced statis-

tical association between neural elements. Previous studies

have noted higher activity in the occipitotemporal cortex

where the visual cortex is excited with face and non-face
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stimuli [2], whereas a face stimulus has been noted to entail

further activation in or near the fusiform gyrus. In this paper,

we address the problem of assessing functional connectiv-

ity in the human brain in response to two different visual

stimuli, face and mock with the goal of (1) assessing the en-

hanced connectivity to facial stimulus, and (2) automatically

classifying the stimuli without relying on human experts.

The experimental setup exploits the steady-state visual

evoked potential (ssVEP), a well-known physiological tool

in human brain studies [3]. ssVEPs are continuous brain re-

sponses caused by flashing visual stimuli, generally modu-

lated in intensity with a fixed rate, falling mostly from 6 to

30 Hz. These scalp potentials are observed to oscillate with a

fundamental frequency equal to the stimuli flashing rate, and

therefore we focus our analysis only on and around this par-

ticular frequency.

Numerous methods have been developed to estimate func-

tional dependence, for example, mutual information [4], co-

herence measures [5, 6] and correlation in time or frequency

domains [7]. The measure of dependence we use in this con-

text is a novel measure proposed in [8], called the generalized

measure of association (GMA). A particular advantage of this

approach is that it is parameter-free. We compare the per-

formance of GMA against the standard Pearson’s correlation,

and observe that GMA produces better conclusions.

This paper is organized as follows. In Section II, we

briefly describe the experimental setting and outline the pre-

processing performed on the recorded EEG scalp potentials.

In Section III, we describe the methodology to compute de-

pendencies among transformed EEG recordings. In section

IV, we compare the performances of GMA and correlation,

and in section V we present some general discussions and

concluding remarks.

2. EXPERIMENTAL PROCEDURE AND
PREPROCESSING

2.1. Setting

The electrode net of a 129-channel Hydro-Cell Geodesic Sen-

sor Net (HCGSN) montage [9] was employed to record neural

activity at scalp locations for a duration of 5 seconds with a

sampling frequency Fs = 1000 Hz. 15 trials were performed
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in which the participants saw two different types of pictures.

The first one shows a neutral human face while the second

one shows a Gabor patch with similar luminance and contrast

as the first figure. Artifacts were reduced by explicitly asking

the subjects not to blink during the recordings. In the follow-

ing sections, we will refer to the facial stimulus as “Face” and

the Gabor patch as “Mock”.

It is known that the electrical conduction property of

the human head would hinder any meaningful interpretation

of dependencies between scalp potentials. To reduce the

effect of volume conduction, we transform our data into cur-

rent source density space following the procedure described

in [10]. This implementation relies on a spherical layered

model of the human head (scalp, skull, cerebro-spinal fluid

and brain) to yield reference-free signals. The noise at odd

multiples of 60 Hz originating from power lines were attenu-

ated using notch filters.

2.2. Signal Processing

The motivation of this particular experimental set-up is to

excite the visual cortex with a stimulus whose response has

defined and “traceable” characteristics i.e. the frequency at

which the stimulating pictures flicker. Therefore, we only

concentrate on a specific frequency band centered around this

flickering frequency. A linear-phase FIR least-squares filter

is used for bandpassing. A detailed account of the filtering

steps can be accessed in [11], which suggests using a length-

50 filter with a unity quality factor (Q). Fig. 1 shows the

original signal for a sample channel, with the resulting FFT

after notching and bandpassing.

Prior to computing dependencies, we embed each pro-

cessed time series in τ = 8 dimensions to account for the

propagation delay among neighboring channels. As a result,

we obtain at each electrode location k a time series Xk em-

bedded in τ -dimension.

3. THE DEPENDENCE GRAPH

Dependence graphs have proved their usefulness in describ-

ing dependence relations between random variables [12]. We

model the electrodes network as a complete undirected graph

G = (V,E), where V is the set of vertices and E is the set

of edges. For each edge eij between two vertices i and j,

we assign a value mij representing the dependence between

Xi and Xj . Note that for correlation, mij exists in the inter-

val [−1, 1], whereas for GMA it lies in the interval [0.5, 1].
We assume that the graph is undirected since our goal is to

quantify dependencies between brain regions, which does not

account for direction. To relax this assumption, measures of

causality and a subsequent directed graph can be considered

for assessing effective connectivity.

Choosing the dependence measure is crucial for our ap-

proach. Correlation can be used in this regard, but since it

only captures second order interactions, it performs rather
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Fig. 1. (a) Original signal for channel 75 and trial 7 over a 4 sec duration

and window showing the same signal at a lower time scale. (b) Frequency

components of the signal in (a). The noisy spikes mask the flickering peak

at 17.5 Hz. (c) Frequency spectrum after cleaning noisy components and

resulting time domain filtered signal. (d,e,f) Same procedure for a smaller

window size.

poorly for time series featuring higher order interactions. We

employ a novel rank-based measure of dependence capable

of capturing nonlinear structure called generalized measure

of association (GMA) [8]. The main advantage of GMA over

other measures of dependence is that it is parameter-free,

which alleviates the problem of choosing specific parameters

such as the kernel size for mutual information. The steps

involved in computing GMA between two time series are

outlined in Algorithm 1.

Algorithm 1: Generalized Measure of Association

Input: Bivariate time series {xt, yt}nt=1

assuming values in the joint space X × Y
Output: Estimated dependence d ∈ [0.5 : 1]

- Assign P (R = r) = 0 ∀ r ∈ {1, . . . , (n− 1)}
for i ∈ {1...n} do

Find xj∗ (j∗ ∈ J ) closest to xi, equivalently

j∗ = argminj �=i δx(xi, xj), where δx denotes

Euclidean distance in X .

- For all j∗ ∈ J , find the spread of ranks, i.e. ri,max

and ri,min of yj∗ in terms of δy such that:

ri,max = #{j : j �= i, δy(yj , yi) ≤ δy(yj∗ , yi)}
ri,min = #{j : j �= i, δy(yj , yi) < δy(yj∗ , yi)}

- For all rank values ri,min < r ≤ ri,max, assign:

P (R = r) = P (R = r)+1/| J |/(ri,max− ri,min)/n

- Compute C as the empirical CDF of {r1, . . . , rn}.

d is the area under C normalized by (n− 1)

We compute the dependence values per time window cor-

responding roughly to the propagation from the occipital to

the frontal region, which is 114 ms [11]. Therefore, mij can
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be denoted as mt
ij , where t refers to the time window index.

Since the time series is 4600 ms after removing the baseline,

we have a total of 40 time windows. Besides GMA, we use

Pearson’s correlation for comparison purposes.

4. SIMULATION RESULTS

Due to the lack of ground truth, we select two criteria for val-

idating our findings and assessing the performance of these

dependence measures. The first criterion is the compliance

with physiological understanding. For example, we expect

the face stimulus to draw more activity in the fusiform gyrus

region, especially in the right hemisphere. The second cri-

terion is the ability to discriminate between the two stimuli.

This can be inferred from observing the distribution of depen-

dence values for the two stimuli, since the face stimuli should

produce more dependence in specific brain regions sensitive

to facial stimuli. Although such an approach does not take

into consideration the spatial distribution of the vertices, it is

simple, and works well for our preliminary evaluation.

We assess the dependence between electrode E72 and the

rest since it is the best location for monitoring dependence

with respect to the occipital region from which the ssVEP

signal is known to emanate. Fig. 2 shows the obtained depen-

dence structure for this channel for both measures of depen-

dence, and for both stimuli. In the case of GMA, the activity

in the right hemisphere for the Face stimulus is noticeable

and suggests the activation of additional subcortical sources.

However, the same thing is less noticeable for correlation,

especially when looking at signed correlation values in the

[−1, 1] range instead of absolute values. The latter approach

also exploits anti-correlation as measure of activation of brain

regions. Fig. 3 further projects the obtained GMA measures

to the brain surface [13].

Fig. 4 shows the empirical cumulative distribution func-

tions (CDFs) for correlation and GMA per stimulus. GMA

yields CDFs that can be easily discriminated whereas for cor-

relation, the CDFs are overlapping and discriminability is less

evident. Using the Kolmogorov-Smirnov (KS) statistic to as-

sess these results, GMA gives a value of 0.8527 versus 0.1938
for correlation.

Finally, we study the impact of the free parameters of our

implementation, namely the time window size and the embed-

ding dimension. Table 1 shows that the impact of embedding

is stronger for smaller time windows. Moreover, as can be

seen in Fig. 5, the difference margin between the two stim-

uli is smaller for larger time windows. This behavior needs to

be analyzed with more scrutiny. A plausible explanation is the

non-stationarity of the time series and the change in statistical

properties over different windows. Also, as we are working

with time windows of around 114 ms (corresponding to the

lower region of the curve), we should expect near-optimum

discriminability between the two conditions.
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Fig. 2. Dependence graphs for Face and Mock for the two dependence

measures of interest. (a,b) GMA. (c,d) Correlation in a [−1, 1] range. (e,f)

Absolute correlation in a [0, 1] range.

Table 1. GMA values between graph vertices i = 72 and

j = 78 for different parameters (T = 114 samples)

Window Size Embedding Dimension GMA Value

1 0.6458
228 (2× T )

4 0.7899

1 0.5803
456 (4× T )

4 0.6659

1 0.5562
1824 (16× T )

4 0.5989

1 0.5515
3192 (28× T )

4 0.5862

1 0.5337
4560 (40× T )

4 0.5550
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(a) Face (b) Mock

Fig. 3. Dependence graph projection over human brain topography using

emegs2.4. Left (Face stimulus) and Right (Mock stimulus) using GMA. Note

that the region neighboring the amygdaloid complex and the right fusiform

gyrus is more active for the Face stimulus rather than the Mock stimulus.
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Fig. 4. Empirical distributions for the correlation and GMA measures over

the dependence graph for one time cycle corresponding to 114 ms clearly

show that GMA has an advantage in discriminating the two conditions. For

(a), the KS statistic is 0.8527 and for (b) KS statistic is 0.1938.

5. DISCUSSION

In this paper, we used a novel measure of dependence to as-

sess the connectivity among different regions of the human

brain in response to two different visual stimuli. Both indi-

cate the presence of active regions in the occipitotemporal

cortex. The first measure of dependence, GMA, addition-

ally suggests the presence of active areas in the amygdaloid

complex and the fusiform gyrus, which would be caused by

subcortical sources in the corresponding brain regions for the

Face stimulus. Correlation produces similar results for the

Face and Mock stimuli and hence poorly discriminates be-

tween the two conditions. Results are also assessed from a

statistical perspective using empirical CDFs that show a better

discrimination for GMA, which earns a higher KS statistic.

Although we do not consider the whole graph connec-

tivity for evaluation in this study, it would be interesting to

assess the dependence values between all possible pairs of

channels and use appropriate statistical methods to extract the

most active edges. An important evaluation tool for a later

study would be a procedure that automatically matches two

graphs displaying dependence structure. Previous examples

in the literature where graph comparison and matching meth-

ods were applied include [14] and [15].
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