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ABSTRACT

One of the ultimate objectives of studying gene regula-

tory networks is to derive potential intervention strategies to

avoid aberrant cellular behavior. Boolean networks (BNs)

and their stochastic extension, probabilistic Boolean networks

(PBNs), provide a convenient framework to design different

types of intervention strategies. In this paper, we focus on

studying structural intervention, in which we perturb regula-

tory Boolean functions to alter the long-term network dynam-

ics to obtain desirable behavior. Specifically, we extend our

previous work that derives optimal structural intervention for

rank-1 function perturbations to more general solutions for ar-

bitrary rank-k function perturbations. The analytic solution is

derived using the Sherman-Morrison-Woodbury (SMW) for-

mula. We apply the derived structural intervention to a mu-

tated mammalian cell cycle network. Our results show that

our intervention strategy correctly identifies the main targets

to stop uncontrolled cell growth in the mutated cell cycle net-

work.

Index Terms— Genetic regulatory network, Boolean net-

work, probabilistic Boolean network, structural intervention,

rank-k matrix perturbation, Sherman-Morrison-Woodbury

1. INTRODUCTION

Cellular functions arise as the results of the coordinated inter-

actions among genes and gene products [1, 2]. To design fu-

ture gene-based therapeutics for complex diseases including

cancer, appropriate mathematical models and corresponding

computational tools for systematic analysis of these complex

interactions are critical. Due to the paucity of the relevant data

and the scarcity of information regarding the underlying reg-

ulatory mechanisms, coarse models for gene regulatory net-

works, including Boolean networks (BNs) [1] and probabilis-

tic Boolean networks (PBNs) [3], appear to be a promising

avenue to model, simulate, and alter the systematic behavior

of biological processes [2, 4, 5].

In PBNs, the underlying network dynamics can be mod-

eled as a finite Markov chain, which enables systematic anal-

ysis using the classical Markov chain theory [6, 7]. Current

intervention strategies in PBNs can be categorized into two

basic types: The first is commonly known as state pertur-
bation, in which control policies are derived to force gene

expression changes by external control to modulate the dy-

namics [2, 8–10]. The second type is structural or function
perturbation [2, 11–13], which has a more fundamental im-

pact by altering the underlying rule-based structures of PBNs

to change the dynamics permanently so that it alters the long-

term abnormal network behavior. In our previous work [13],

we have derived an analytical solution to compute the per-

turbed steady-state distribution (SSD) by function perturba-

tion of regulatory rules. However, the previous solution was

limited to rank-1 perturbations with the computationally ex-

pensive iterative procedure as the extension for general rank-k
perturbations.

In this work, we generalize our previous work to derive an

analytic solution to compute the long-term dynamic change

caused by general function perturbation to PBNs, which can

be used to derive structural intervention strategies to achieve

desired behavior and reduce the risk of entering into aberrant

phenotypes. The derivation for computing perturbed SSDs

for general rank-k function perturbations is based on a ma-

trix inverse operator using the Sherman-Morrison-Woodbury
(SMW) formula [14]. With the derived analytic solution, we

study a mutated mammalian cell cycle network to show that

we may derive structural intervention strategies to identify

critical intervention targets.

2. BACKGROUND

Dynamics in PBNs are modeled by regulatory Boolean func-

tions and the related probabilistic parameters. For a binary

PBN with n genes, each gene i has its gene expression state

quantized to two levels: xi ∈ {0,1} whose temporal state tran-

sition is determined by the values of some other genes via

a predictor Boolean function fi : {0,1}Ki �→ {0,1}, where
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Ki is the input degree of xi in the network. The predictor

Boolean functions for all the genes determine the network dy-

namics. There are two commonly accepted transition rules:

“majority vote” rule [15], and “strong inhibition” rule [16].

State transitions can either be synchronous or asynchronous

[16]. With probabilistic parameters, we can derive the cor-

responding state transition diagram and analyze the network

dynamics via the finite Markov chain theory. The underlying

Markov chain of a PBN is irreducible and ergodic. Hence,

the network possesses a steady-state distribution (SSD)π such

that πT = πT P, where P is its transition matrix determined

by the network model, and T denotes transpose. The SSD

reflects the long-term behavior of a PBN and the change of

SSD by different types of perturbations may guide the design

of beneficial intervention strategies [2, 8, 13].

We study structural perturbation to model the siRNA in-

terference of regulatory relationships, in which we assume

that we can block the regulation between any two genes in

the network. Mathematically, the perturbed network will have

a perturbed transition matrix P̃ with a new SSD π̃ . Without

loss of generality, for intervention, we partition the network

state space into sets U and D of undesirable and desirable
states, often according to the expression states of a given set

of genes. We aim to find the optimal structural intervention

which gives the minimum π̃U = ∑x∈U π̃x, where π̃x denotes

the perturbed steady-state probability at a given state x.

We have recently derived analytical solutions for struc-

tural perturbations with simple forms, including 1-bit func-

tion perturbations [13]. These perturbations can be mathemat-

ically represented by a perturbation matrix E with P̃ = P+E.

For 1-bit function perturbation, E is a rank-1 matrix: E = abT .

To maintain P̃ as a stochastic matrix, a,b are two arbitrary

vectors satisfying bT e = 0 with e as a column vector with all

its entries equal to 1. In [13], more general function pertur-

bations, for example, with rank-k matrix E, have to be solved

iteratively. Within each iteration, the fundamental matrix Z̃
of the perturbed underlying Markov chain has to be updated

together with the SSD π̃ based on the following equations:

π̃T = πT +
πT a

1−bT Za
bT Z, (1)

Z̃ =
[

I − (πT a)ebT Z
1−bT Za

][
Z +

ZabT Z
1−bT Za

]
, (2)

where Z = (I − P + eπT )−1 is the fundamental matrix cor-

responding to the original P before perturbation. For each

iteration, the time complexity is O(2n) where n is the number

of genes in the network. When the perturbation matrix has a

higher rank, the solution will have similar complexity as the

power method for computing the perturbed SSD.

3. METHODS

In this work, we derive analytic solutions to efficiently com-

pute the perturbed SSD for more general rank-k function per-

turbations E = UV T , in which UV T is a rank-k matrix in the

decomposed version: U and V are both 2n × k matrices satis-

fying the constraints to guarantee that P̃ remains a stochastic

matrix. For the specific forms of U and V matrices from func-

tion perturbations to PBNs, we can derive them similarly as

in our previous work [13]. Typically, k is much smaller com-

paring to 2n for local structural or function perturbations to

PBNs. Now, we derive analytic solutions for the perturbed

SSD caused by an arbitrary rank-k function perturbation.

As the underlying Markov chain of a PBN is irreducible

and ergodic, both the original and perturbed PBN have their

SSDs satisfying: πT = πT P, and π̃T = π̃T P̃. We can write

out the change of SSDs caused by perturbation:

π̃T −πT = π̃T P̃−πT P = (π̃ −π)T P+ π̃T E

⇒ (π̃ −π)T (I −P) = π̃T E, (3)

where I is the identity matrix. Further, we notice that (π̃ −
π)T P∞ = (π̃ − π)T eπT = 0 as for an arbitrary SSD π , we

have πT e = 1. Therefore, (π̃ − π)T (I −P) = (π̃ − π)T (I −
P+ eπT ) = π̃T E. Multiplying both sides by the fundamental

matrix Z, we have (π̃ −π)T (I−P+P∞)Z = π̃T EZ, and (π̃ −
π)T = π̃T EZ. Hence, π̃T (I −EZ) = πT and

π̃T = πT (I −EZ)−1. (4)

Similar results have been given in [7]. For a fully character-

ized PBN with given π and Z, the task to compute a perturbed

SSD by the function perturbation E lies at efficient computa-

tion of the inverse matrix (I −EZ)−1.

Now, we introduce the SMW formula for computing the

inverse matrix with the general form (A+BCT )−1:

(A+BCT )−1 = A−1 −A−1B(I +CT A−1B)−1CT A−1. (5)

Recalling that E =UV T , we have (I−EZ)−1 =(I−UV T Z)−1.

Let A = I, B = U , and C = V T Z in (5), we get

(I −EZ)−1 = I +U(I −V T ZU)−1V T Z. (6)

Note that (I −EZ) is a 2n × 2n matrix. Using the SMW for-

mula, the inverse of this large matrix has been transformed to

the inverse of (I −V T ZU), in which U and V are 2n × k ma-

trix and therefore (I−V T ZU) is a k×k matrix. Hence, for an

arbitrary rank-k function perturbation, the determinant factor

for the computational complexity to compute π̃—the inverse

of (I −EZ)—has been greatly reduced from O(23n) to O(k3)
when k � 2n: π̃T = πT + πTU(I −V T ZU)−1V T Z. Our new

derived analytic solution for the perturbed SSD based on the

SMW formula is much more efficient comparing to either the

power method or the iterative method proposed in [13].

4. EXPERIMENTS AND DISCUSSIONS

We implement the derived method to a mutated mammalian

cell cycle network. The original cell cycle network [5] has

n = 10 genes (CycD, Rb, p27, E2F, CycE, CycA, Cdc20,

Cdh1, UbcH10, and CycB) and the regulatory relationships

are given in Figure 1. This network models mammalian cell

division that is controlled via extra-cellular signals and coor-

dinates with overall growth, in which Rb will be expressed to

coordinate the cell cycle in the absence of the cyclins. Gene
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p27 can stop the uncontrolled cell cycle as it blocks the action

of CycE or CycA and thereafter Rb can also be expressed,

even in the presence of CycE or CycA. In [10], a mutated cell

cycle network was derived based on this to demonstrate the

effectiveness of mathematically designed intervention using

PBNs. In the mutated network, p27 is mutated and is always

off. This models the cancerous scenario, in which p27 can

never be activated. Under this mutated situation, the cell will

cycle in the absence of any growth factor when both CycD

and Rb are inactive, which represents a cancerous phenotype.

We model this mutated network by a PBN with xi denoting

the expression state for each of the nine genes without p27

in the order of CycD, Rb, E2F, CycE, CycA, Cdc20, Cdh1,

UbcH10, and CycB. The dashed lines in Figure 1 correspond

to inactive interactions due to the mutation of p27. We con-

sider the logic states in which both Rb and CycD are down-

regulated as undesirable states: U = {x | x1 = 0,x2 = 0}. To

model it as a PBN, we set the perturbation probability for each

gene expression state p = 0.01 and derive the logic Boolean

transition functions based on the “majority vote” rules[15]. In

this case, we first define the regulatory relationship between

gene i and j as follows:

R j→i =

⎧⎨
⎩

1 j activates i
0 j does not regulate i
−1 j suppresses i

The transition for xi is determined by:

fi(x) =

⎧⎨
⎩

1 if ∑ j R j→ix j > 0

xi if ∑ j R j→ix j = 0

−1 if ∑ j R j→ix j < 0,
∀i.

We compute the SSD for this mutated cell cycle net-

work as shown in Figure 2(A) and the undesirable mass

πU = ∑x1=0,x2=0 πx = 0.4591. The class of structural in-

tervention strategies is to perturb the network to block the

suppressing or activating regulatory action between any reg-

ulatory pair of genes in the original mutated network (by

setting R j→i = 0). Based on the fully specified network

model, we can analytically compute the perturbed SSD us-

ing the derived solution for the structural perturbation by

blocking each single existing interaction. We rank all the

existing regulatory interactions based on the reduction of

the undesirable SSD mass. Using different colors, Figure 1

illustrates the group of the edges, on which our structural

perturbation reduces the undesirable SSD mass. With mu-

tated p27, the suppressing regulatory action from CycE to Rb

(in red) indeed leads to the most reduced undesirable mass

(π̃U = 0.4026) and hence is the optimal structural intervention

target if we block only one regulation. The second and third

best perturbations are to block the activating regulation from

E2F to CycE, and the suppressing regulation from CycA to

Rb, respectively. If we check the top five beneficial structural

perturbations illustrated in blue in the figure, it is interesting

to note that the critical regulatory interactions for potential

intervention targets connect important genes in the network,

typically between the cyclins (CycA, CycB, CycD, CycE),

Fig. 1. Mutated mammalian cell cycle network modified from

[5]: Normal arrows stand for activations and blunt arrows for

suppressing effects. Dashed arrows are the inactive regula-

tions due to the mutation of p27. The red arrow from CycE to

p27 is the regulatory relationship that gives the largest reduc-

tion of undesirable mass by intervention. The top five regu-

lations according to the undesirable SSD mass reduction are

marked in blue. The other regulations leading to beneficial

dynamic changes are marked in green.

E2F, and Rb, in the cancerous situation with p27 mutated.

This finding is congruent with the recent experimental find-

ing that the Rb and E2F play critical roles for the reverse

of the R-point (restriction point), which marks the critical

event when a mammalian cell commits to proliferation inde-

pendent of growth stimulation [17]. The R-point appears to

be dysregulated in virtually all cancers and hence the identi-

fied intervention targets are biologically significant [17, 18].

Finally, we block the top five regulatory interactions except

the suppressing regulation from CycD to Rb for the integrity

of the network. The derived structural intervention obtains

the undesirable mass π̃opt
U = 0.3299 with the perturbed SSD

shown in Figure 2(B).

To demonstrate the superiority of the derived solution

based on the SMW formula for rank-k function perturbations

regarding the time complexity, we have compared its running

time with the time spent to compute perturbed SSDs using

the power method. Table 1 gives the running time for two

methods with the unoptimized code running in MATLAB on

a MacPro station with a 2.93GHz CPU and 3GB memory.
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(A) (B)

Fig. 2. The steady-state distributions for the mutated mammalian cell cycle network: (A) Original SSD; (B) Perturbed SSD.

Table 1. Running time for computing perturbed SSDs

Method Power Method SMW (Proposed)

Time (sec.) 1.89 0.33

These values serve as rough indices that show the reduced

time complexity by our new method. For structural interven-

tion to the mutated cell cycle network, the new method leads

to more than 80% reduction of the running time. The derived

solution is in fact useful for the perturbation analysis of any

finite Markov chain model, not just PBNs, and to the best

of our knowledge, it is the first analytic solution for general

rank-k perturbation. Our preliminary results indicate that our

new solutions for perturbed SSDs by general rank-k function

perturbations may lead to more efficient methods to derive

optimal structural intervention strategies to achieve beneficial

dynamic changes.
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