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ABSTRACT

We propose a regularization based on geometric structure for feature
extraction in a sensor array for brain data recordings. The purpose
of the study is to add a penalty term using distances between sen-
sors as the geometric information for finding spatial weights. The
regularization term is derived under the definition of neighbors of
sensors. We evaluate the proposed regularization in common spatial
pattern (CSP) which is a well-known feature extraction method for
EEG based brain computer interface (BCI). We have demonstrated
the CSP procedure with the regularization by simulation for artifi-
cial signals. The results show that the proposed method works bet-
ter than standard CSP in extracting of a component generated in a
certain brain spot. Moreover, the classification experimental results
using dataset of motor imagery based BCI suggest that the proposed
method achieved maximum improvement by 27% in the classifica-
tion accuracy over the standard CSP in a setting of even when we
use only five samples.

Index Terms— sensor arrays, regularization, brain computer in-
terfaces, electroencephalography

1. INTRODUCTION

Regularization is a widely used method to prevent overfitting or to
solve an ill-posed problem in signal processing and machine learn-
ing [1–3]. The regularization for an optimization problem is to add to
an original cost function a penalty term which represents additional
information such as smoothness and bounds of the vector norm of
optimization parameters. This technique is useful when we process
signals observed with a sensor array which is an observation system
using several sensors which are installed apart from each other. A
sensor array is used to improve the signal to noise ratio (SNR) of
signals or to separate some source signals from observations. In
fields of brain signal measurement systems such as multichannel
electroencephalogram (EEG) system, wireless communication tech-
niques such as multiple input multiple output (MIMO), and so on,
sensory arrays are widely used. However, in the case of electrophys-
iological signals, extracting features with limited number of sensors
is highly ill-posed. This motivates us to establish a regularization
method that exploits the geometry of sensors.

In this paper, we consider regularization for weights in the fol-
lowing classical problem;

y(t) =
MX

i=1

wixi(t), (1)
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whereM is the number of sensors, xi(t) is a signal observed at time
t in the ith sensor that captures signals from brain, wi is a weight for
the ithe sensor, and y(t) is an extracted feature. In this problem, we
seek the weight vector w = [w1, . . . , wM ]T to extract certain com-
ponents observed in the sensor array. This problem involves many
signal processing techniques such as principal component analysis
(PCA) and independent component analysis (ICA) [4]. In this case,
the weight vector w can be regarded as spatial weight. In some situ-
ations, the signals measured by close sensors are similar and the ob-
served features are similar. Consider a measurement system of EEG
which observes faint electrical difference by electrodes installed in
scalp. The EEG reflects the summation of the synchronous activity
of thousands or millions of neurons [5, 6]. Therefore, compared to
separate sensors, close sensors observe activities which are induced
from the same neurons. As results, when spatial weight w is de-
signed with the purposes of feature extraction and/or improvement
SNR, the weight coefficients corresponding to the close sensors can
take similar value. Our proposed method is to use this prior informa-
tion by introducing a geometric structure based regularization. The
proposed regularization term evaluates a value like a second deriva-
tive of weight coefficients in close sensors.

Moreover, we apply the proposed regularization for the com-
mon spatial pattern (CSP) [7, 8] method. CSP, which uses spatial
weights that extract the most discriminative information, is an effi-
cient method for extracting the brain activity for EEG based brain
computer interface (BCI) [6]. For the regularization, we define a dis-
tance of two electrodes on international 10-20/10-10/10-5 methods.
Because the regularization term can be formulated in a quadratic
form, the regularized CSP can be solved with a generalized eigen-
value problem. CSP with the proposed regularization has been
demonstrated for artificial signals to show close electrodes have
similar weight coefficients. The classification experiment for mo-
tor imagery based BCI (MI-BCI) dataset has been conducted with
comparing an existing regularized CSP [9] and the proposed method
demonstrated improvement of classification accuracy in a setting of
the small number of samples.

2. REGULARIZATION BASED ON GEOMETRIC
STRUCTURE ON HEAD SURFACE

We propose a regularization of using geometric structures for a sen-
sor array on head surface. We first introduce geometric structure on
head surface, that is, a distance between electrodes, of EEG mea-
surement system in Sec. 2.1. The regularization is derived with the
defined distance in Sec. 2.2.

721978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

0

0.2

0.4

0.6

0.8

1

Fp1
Fp2

F7

F3

FzF4

F8

T7

C3

Cz
C4

T8

P7

P3

Pz
P4

P8
O1

O2

ψ

Figure 1: Electrode arrangement of the international 10-20 method
on the orthogonal coordinates. The red circles represent the elec-
trodes.

2.1. A distance between electrodes

We introduce the electrode arrangements widely used for EEG mea-
surement and define a distance between electrodes on the arrange-
ments. When spatial high resolution EEG measurement is required,
international 10-20, 10-10, and 10-5 methods [5, 10, 11] have stood
as the de-facto standard of electrode arrangement. These systems
describe head surface locations via relative distances between cra-
nial landmarks over the head surface. In the international 10-20
method, the position determined as follows. Reference locations are
nasion, level with the eyes, and inion [5]. From these points, the
skull perimeters are measured in the transverse and median planes.
Electrode locations are determined by dividing these perimeters into
10 % and 20 % intervals. Although the shape of head depends on
the difference among individuals, the shape of head is supposed
as a sphere, and we define coordinates to describe an electrode ar-
rangement. The electrode positions defined the international 10-20
method are illustrated in Fig. 1. The position on head surface can be
represented as {x, y, z}.

We want to know the perimeter of a sector the two sides of which
are line segments between the origin and two electrode position on
the coordinates as the distance between two electrodes. Given the
position of the two electrodes as {x1, y1, z1} and {x2, y2, z2}. The
angle between the line segments between the origin and the electrode
positions can be given as ψ = arccos(x1x2+y1y2+z1z2), becausep
x2 + y2 + z2 = 1. As the unit of ψ is radian, the distance of the

two electrodes given by d = 2πψ/2π = ψ. The distance between
the ith and the jth electrodes is represented as dij . Figure 1 illus-
trates this metric by showing the distance between Fz and O1 as
an example. The length of the curve connecting Fz and O1 is the
defined distance by the metric.

2.2. Regularization

Suppose a sensor array consists of M sensors. By the metric de-
fined in Sec. 2.1, we obtain dij for i, j = 1, . . . ,M as the distances
between sensors. We next define the transform function for dij as

gij = exp

„
− d2

ij

2p2

«
(2)

where p is a parameter to decide close sensors of a sensors. In or-
der to evaluate the weight differences with considering geometric

feature, we define the cost:

P (w) =

MX
i=1

˛̨̨
˛̨

MX
j=1

gij(wi − wj)

˛̨̨
˛̨
2

. (3)

We can transform a term of cost as
PM

j=1 gij(wi − wj) =

(
PM

j=1,j �=i gij)wi − PM
j=1,j �=i gijwj , so we can regard the term as

a Laplacian filter for ith sensor under an assumption of a uniform
sensor arrangement.

Eq. (3) can be transformed to matrix vector form as follows. A
matrix, G, and a diagonal matrix, D, are defined as

[G]ij = gij , [D]ii =
MX

k=1

gik, i, j = 1, . . . ,M. (4)

By using them, (3) can be represented in matrix-vector form as

P (w) = wT (D − G)(D − G)T w. (5)

3. COMMON SPATIAL PATTERN WITH THE
GEOMETRIC STRUCTURE BASED REGULARIZATION

BCI is an interface using brain signals as inputs. The input signals
are classified to a class corresponding to a mental task or an external
stimulus in BCIs. CSP is an effective method for the feature extrac-
tion and classification in two class MI-BCI [7,8]. In this section, we
propose a method of CSP with the regularization explained in Sec. 2.
We first review basic CSP algorithm and add the regularization into
CSP.

3.1. Common spatial pattern (CSP) [7, 8]

CSP is a method that designs spatial weights extracting a signal of
which a variance is different between BCI classes (e.g. left hand and
right hand classes) [7, 8]. The problem using labeled learning sam-
ples to design the spatial weights can be formulated as follows. Let
X ∈ R

M×N be a matrix representing observed signals, where M is
the number of channels and N is the number of samples. CSP finds
a spatial weight vector, w ∈ R

M , in such a way that the variance
of a signal extracted by linear combination of X and w is min-
imized in a class [8]. Denote the components (vectors) of X by
X = [x1, . . . ,xN ], where xn ∈ R

M and n is the time index. The

time average of the observed signal is given by μ = N−1 PN
n=1 xn.

Then, the time variance of the extracted signal of X is given by
σ2(X ,w) = N−1 PN

n=1 |wT (xn − μ)|2, where ·T denotes the
transpose of a vector or matrix. We assume that sets of the learning
data are represented as C1 and C2, where Cd contains the signals be-
longing to class d, d represents a class label chosen in {1, 2}, and
C1 ∩ C2 = ∅. We choose c as a class label and CSP finds wc by
solving the following optimization problem [7, 8];

min
w

EX∈Cc [σ
2(X ,w)],

subject to
X

d=1,2

EX∈Cd [σ2(X ,w)] = 1,
(6)

where EX∈Cd [·] denotes the expectation over Cd. Then, (6) can be
rewritten as

min
w

wT Σcw, subject to wT (Σ1 + Σ2)w = 1, (7)

where Σd are defined as Σd = EX∈Cd [N−1 PN
n=1(xn−μ)(xn−

μ)T ], for d = 1, 2. The solution of (7) is given by the generalized
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eigenvector corresponding to the smallest generalized eigenvalue of
the generalized eigenvalue problem described as

Σcw = λ(Σ1 + Σ2)w. (8)

Though the solution of (7) is given by the eigenvector cor-
responding to the smallest eigenvalue in (8), we can use the other
eigenvectors for feature extraction [7,8]. TheM eigenvectors can be
obtained by solving (8) as ŵ1, . . . , ŵM , where ŵi is the eigenvec-
tor corresponding to the i-th largest eigenvalue of (8). We assume
that the 2r eigenvectors are used to classify an unlabeled data, X .
Then we obtain the feature vector, y ∈ R

2r , from X defined as y =
[σ2(X , ŵ1), . . . , σ

2(X , ŵr), σ
2(X , ŵM−r+1), . . . , σ

2(X , ŵM )]T .

3.2. Regularized common spatial pattern

We add the regularization defined in (5) into CSP. G and D used
in P (w) are calculated by the distance defined in Sec. 2.1 with the
parameter, r. The optimization problem with the regularization are
defined as

min
w

wT (Σc + γ(D − G)(D − G)T )w,

subject to wT (Σ1 + Σ2)w = 1,
(9)

where γ is a combination coefficient. When the matrices of Σc +
γ(D − G)(D − G)T and Σ1 + Σ2 are nonsingular, (9) can be
solved by the generalized eigenvalue problem:

(Σc + γ(D − G)(D − G)T )w = λ(Σ1 + Σ2)w. (10)

The feature vector is extracted as follows. In each case of
c = 1 and c = 2, we solve (10), and we get 2M eigenvectors

as ŵ
(1)
i and ŵ

(2)
i (i = 1, . . . ,M ) in each eigenvalue problem.

By using the weight vectors, the feature vector is defined as y =

[σ2(X , ŵ
(1)
1 ), . . . , σ2(X , ŵ

(1)
r ), σ2(X , ŵ

(2)
1 ), . . . , σ2(X , ŵ

(2)
r )]T .

4. EXPERIMENTS

We demonstrated the regularized CSP in artificial signals and real-
world EEG signals. In the simulation of artificial signals, we eval-
uate the ability of extracting a local feature. Moreover, we classify
EEG signals by spatially weighting of the proposed method.

4.1. Simulation using artificial signals

We used artificial signals including source signals to be extracted.
We know the spatial distributions of the source signals to compare
the spatial weights given by CSP to true distributions. The artificial
signals were generated as follows. Given s1[t] and s2[t] as source
signals which are assumed to be related to two BCI classes, where t
is the discrete time index. The signals belonging to class 1 and 2 are
generated by

x1[t] = a1s1[t] + 2a2s2[t] + βη1[t], (11)

x2[t] = 2a1s1[t] + a2s2[t] + βη2[t], (12)

where xi[t] is observed signals in all channel at the time index t,
ai is a spatial distribution of a source signal, β is a coefficient to
determine SNR, and ηi[t] is a noise signal. The simulation settings
are as follows. Figure 2a shows s1[t] and s2[t]. As the signal length
was set to 1 second with sampling frequency of 512 Hz, the number
of samples in the signal was 512. As shown in Fig. 2b, the source
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Figure 2: The artificial signals.

(a) ŵ1 and ŵ118 of CSP (c = 1). (b) ŵ
(1)
1 and ŵ

(2)
1 of the proposed

method.

Figure 3: Topographical maps of the spatial weights in the experi-
ment using the artificial signals.

signals have same frequency spectra but differ in phase for each fre-
quency. The international extended 10-20 method was adopted as
the electrode arrangement and the number of the electrodes was 118.
The spatial distributions represented by a1 and a2 were based on
Gaussian distributions and the topographically showed spatial distri-
butions are shown in Fig. 2c. η1[t] and η2[t] were random values
generated from a Gaussian distribution (mean 0, variance 1) and β
was set to 0.01. Examples of observed signals are shown in Fig. 2d.

Figure 3 shows the topographically plotted spatial weights given
by CSP and the proposed method. The proposed method imple-
mented under the parameters of p = 0.05 and γ = 1010. Comparing
with CSP, in the proposed method, the large weight electrodes con-
centrate at the certain spots. Moreover we can observe in Fig. 3b that
the topographical map of the spatial weights given by the proposed
method is close to the true distribution map shown in Fig 2c.

4.2. Classification of real-world EEG signals

We compare performance in classifying EEG signals during motor
imagery using the proposed method to those using standard CSP and
the spatially regularized CSP (SRCSP) [9], respectively. The EEG
signals were classified to two classes by spatially weighting and a
classifier.

4.2.1. Data description

We used dataset IVa from BCI competition III (for details of the
dataset, see http://www.bbci.de/competition/iii/). This dataset
consists of EEG signals during right hand and right foot motor-
imageries. The EEG signals were recorded from five subjects
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Table 1: Accuracy [%] given by 100 learning samples per a class.

Subject
aa al av aw ay Ave.

CSP 81.7 94.7 54.2 93.6 89.1 82.7
SRCSP 82.5 95.2 67.4 95.0 92.3 86.5

Proposed 82.6 95.4 67.5 95.1 92.3 86.6

Table 2: Accuracy [%] given by 5 learning samples per a class.

Subject
aa al av aw ay Ave.

CSP 52.6 65.6 51.3 62.3 51.3 56.6
SRCSP 59.4 76.9 55.0 75.8 77.6 68.9

Proposed 60.2 77.7 55.0 76.4 78.9 69.6

labeled aa, al, av, aw, and ay. The measured signal was bandpass
filtered with the passband of 0.05–200 Hz, and then digitized at
1000 Hz. Moreover, we applied to this data the lowpass filter whose
the cutoff frequency is 50 Hz, and downsampled to 100 Hz. The
dataset for each subject consisted of signals of 140 trials per a class.
A signal of one trial was measured for 3.5 seconds.

4.2.2. Results

Before we apply CSP and the proposed method, the signals were
bandpass filtered with the passband of 7–30 Hz. The feature vectors
extracted by CSPs were classified by linear discriminant analysis [3].

The classification accuracy was given by learning using random-
chosen 100 samples and testing using the remaining samples.
The accuracy shown in Table 1 is an average accuracy over 100
times of this procedure. For SRCSP and the proposed method,
we chose the parameters out of p ∈ {0.025, 0.05, 0.075, 0.1} and
γ ∈ {100, 101, . . . , 1030}. The dimension of the feature vec-
tor 2r was set to 2. The best accuracy among the parameters
for each subject is shown in Table 1. For aa, al, av, aw, and
ay, {r, γ} are set to {0.025, 1019}, {0.05, 1010}, {0.025, 1025},
{0.05, 108}, and {0.05, 1010}, respectively, in SRCSP. In the
proposed method, {r, γ} are set to {0.05, 1012}, {0.05, 1016},
{0.05, 1014}, {0.075, 107}, and {0.05, 1016}, respectively. The
both of regularized CSP algorithms slightly outperform the standard
CSP in the classification accuracy for all subjects.

Table 2 also shows classification accuracy, however when the
number of learning samples is considerably reduced to only 5 sam-
ples. As the same as in Table 1, the parameters performing the best
classification accuracy are chosen out of the candidates. For aa,
al, av, aw, and ay, {r, γ} are set to {0.05, 109}, {0.025, 1025},
{0.05, 1011}, {0.05, 1010}, and {0.05, 1010}, respectively, in
SRCSP. In the proposed method, {r, γ} are set to {0.05, 1015},
{0.05, 1015}, {0.05, 1016}, {0.05, 1016}, and {0.05, 1016}, re-
spectively. We can observe significant improvement of accuracy
for subject ay. The result suggests that the proposed regularization
can improve the accuracy even if the number of available learning
samples is small.

Figure 4 shows the topographically plotted spatial weights for
subject ay. The spatial weights were found by using all samples
of the dataset. The parameters of the proposed method, c and γ,
were set to 0.05 and 1015, respectively. Comparing with CSP, the
electrodes which have large coefficients do not be scattered spatially
in the proposed method.

(a) ŵ1 and ŵ118 of CSP (c = 1). (b) ŵ
(1)
1 and ŵ

(2)
1 of the proposed

method.

Figure 4: Topographical maps of the spatial weights for subject ay
(EEG signals).

5. CONCLUSION

We have proposed the regularization based on the geometric infor-
mation for feature extraction problem in an EEG sensor array on
head surface. We illustrated the regularization procedure which was
used for CSP for artificial signals and MI-BCI dataset. The results
demonstrated that the proposed method improves classification ac-
curacy in a setting of the small number of samples. Although the
regularization works under the assumption of a uniform sensor ar-
rangement, the arrangement is not spatially uniform always. For
future works, we have to solve the problem.
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