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ABSTRACT
This paper considers the problem of reconstructing images

from only a few measurements. A method is proposed that is

based on the theory of Compressive Sensing. We introduce

a new prior that combines an �p-pseudo-norm approximation

of the image gradient and the bounded range of the original

signal. Ultimately, this leads to a reconstruction algorithm

that works particularly well for Cartoon-like images that com-

monly occur in medical imagery. The arising optimization

task is solved by a Conjugate Gradient method that is capa-

ble of dealing with large scale problems and easily adapts to

extensions of the prior. To overcome the none differentiabil-

ity of the �p-pseudo-norm we employ a Huber-loss term like

approximation together with a continuation of the smoothing

parameter. Numerical results and a comparison with the state-

of-the-art methods show the effectiveness of the proposed al-

gorithm.

Index Terms— Compressive Sensing, �p minimization,

Image Reconstruction, Conjugate Gradient Algorithm

1. INTRODUCTION AND NOTATION

In recent years, Compressive Sensing (CS) [1, 2] has evolved

as one of the most active research topics in the signal process-

ing community. Basically, CS is a joint sampling and com-

pression mechanism, which enables perfect signal reconstruc-

tion from a very small number of non-adaptively acquired

measurements. These measurements encode the entire infor-

mation about the signal at hand into a very small amount of

data, much smaller than the signal’s dimension. More pre-

cisely, let s ∈ R
n denote the signal of interest. We are com-

puting m � n inner products between s and a set of sig-

nal independent measurement vectors {φi}mi=1, which can be

compactly written as

y = [φ1, . . . , φm]�s+ e =: Φs+ e. (1)

The vector y ∈ R
m contains the measurements, e ∈ R

m

models sampling errors, and Φ ∈ R
m×n is the measurement
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matrix. Clearly, without further information on the signal, the

problem of inferring the signal from the measurements is ill-

posed. Prior assumptions on the signal help to well-define

the recovery problem: The CS-framework exploits the fact

that many interesting signals have a sparse- or compressible

representation with respect to some (possibly overcomplete)

basis.

Let x ∈ R
d with d ≥ n denote the k-sparse represen-

tation of the signal, where k-sparse means that only k � d
entries of x are nonzero. We write the corresponding linear

transformation as x = Ds, where D ∈ R
d×n is a sparsifying

transformation with full rank. Furthermore, let g : Rn → R

be a function that promotes or measures sparsity. We denote

the Moore-Penrose pseudo-inverse of D byD†. The recovery

of the signal thus leads to the well known synthesis approach,

cf. [3],

minimize
x∈Rd

g(x) subject to ‖ΦD†x− y‖22 ≤ ε, (2)

where ε is an estimated upper bound on the noise power ‖e‖22.

Informally speaking, by solving (2), we find the sparsest vec-

tor x̂ that is compatible with the acquired measurements. The

signal is then recovered by s� = D†x̂.

Another common procedure is to directly search for a sig-

nal ŝ such that Dŝ is sparse. Formally, ŝ is the solution of

minimize
s∈Rn

g(Ds) subject to ‖Φs− y‖22 ≤ ε, (3)

which is known as the analysis approach, see [3] for the rela-

tion between problem (2) and (3). In the field of image pro-

cessing, problem (3) is favored over (2) due to the lower di-

mension of the search space. Moreover, for many practically

important operators D the computation of D†x is infeasible.

Thus, we will focus on problem (3) here. Throughout the pa-

per, v(i) denotes the ith entry of the vector v andM(i, j) the

(i, j)-entry of the matrixM.

Clearly, with the k-sparsity assumption on x, the ideal

choice for g would be the �0-pseudo-norm ‖v‖0 := #{i :
v(i) �= 0}, which counts the nonzero elements of v. Unfor-

tunately, solving problem (3) with g(Ds) = ‖Ds‖0 is com-

putationally intractable as it is combinatorial NP-hard. In-

stead, it has been shown in [4] that depending on Φ and D
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the replacement of the �0-pseudo-norm by its closest convex

surrogate, the �1-norm ‖v‖1 :=
∑

i |v(i)|, gives the same

solution. In the noise free case, if the number of measure-

ments m is large enough compared to the sparsity factor k,

this solution to (3) yields the exact recovery of the signal

[5]. The number of measurements required for ideal recon-

struction can even be further decreased, if an �p-pseudo-norm

‖v‖pp :=
∑

i |v(i)|p with 0 < p < 1 is employed instead of

the �1-norm, [6]. However, the resulting optimization prob-

lem cannot be solved by straightforward linear quadratic pro-

gramming, but approximations like reweighted least squares

[7], or an iterative shrinkage method [8] can applied.

In this paper we present an algorithm for reconstructing

compressively sampled images via �p-minimization. We in-

troduce an additional prior that copes with the boundedness of

the range of images. This prior accelerates the optimization

process and drastically improves the reconstruction results.

2. PROBLEM STATEMENT

As stated above, our goal is to reconstruct compressively sam-

pled images I ∈ R
h×w, where our focus is on Cartoon-like

images, i.e. images that are piecewise flat.

We consider two sampling bases, namely partial discrete

Fourier transform (DFT) and the Rudin-Shapiro transforma-

tion (RST) [9]. The interest for the DFT arises due to its im-

portance in magnetic resonance imaging (MRI) where Fourier

coefficients are directly sampled. The RST, also know as the

real valued Dragon-Noiselet-transformation, is used as it can

be implemented into a real imaging sensor, and due to its de-

sirable properties for image reconstruction [10].

Following a common approach in image reconstruction,

we impose a sparsity prior on the image gradient. The sim-

plest way of approximating the gradient is in terms of finite

differences with

∂I
∂x

(i, j) =

{
(I(i, j)− I(i+ 1, j))/

√
2 if i < w

0 otherwise,
(4)

being the difference between two neighboring pixels in hor-

izontal direction, and ∂I
∂y (i, j) the difference between two

neighboring pixels in vertical direction defined accordingly.

Let s := vec(I) ∈ R
n with n = hw be the vectorized im-

age obtained by stacking its columns among each other. We

define Dx ∈ R
n×n and Dy ∈ R

n×n as those matrices that

realize the approximate image gradients, i.e.

Dxs = vec

(
∂I
∂x

)
, Dys = vec

(
∂I
∂y

)
. (5)

The sparsity assumption on the image gradient yields

D =

[Dx

Dy

]
∈ R

2n×n, (6)

as the sparsifying transformation that we consider for our

problem at hand.

Regarding the choice of the sparsity measure, we com-

pared the p-pseudo-norms ‖Ds‖pp with

‖Ds‖TVp :=

n∑
i=1

((Ds)(i)2 + (Ds)(i+ n)2)
p
2 , (7)

which for p = 1 are the well known anisotropic, and isotropic

Total Variation pseudo-norms, respectively. While the p-

pseudo-norm enforces sparsity of the gradient in x and y
direction separably, the latter (7) enforces the magnitude of

the gradient to be sparse. This has the nice effect that (7)

is invariant under rotations of the underlying picture, conse-

quently, we employ it for further studies here.

Finally, we exploit the fact that the pixel intensities of im-

ages are bounded. If we denote the lower bound by τl and the

upper bound by τu, this leads to the constraint optimization

problem

minimize
s∈Rn

‖Ds‖TVp

subject to ‖Φs− y‖22 ≤ ε, τl ≤ s(i) ≤ τu.
(8)

For τl = 0 and τu = +∞ this is the well known positivity

constraint. Here, as we are dealing with images, we typically

chose τl = 0 and τu = 1 or τu = 255 depending on the

image format. Our experiments provide evidence that these

additional constraints drastically improve the reconstruction

quality and accelerate the optimization process.

3. RECONSTRUCTION ALGORITHM

The reconstruction algorithm proposed here is based on a

Conjugate Gradient (CG) method that minimizes a smooth

approximation of the optimization problem (8). It allows

to easily integrate additional priors into the minimization

process without sever changes. To enhance legibility, we

stick to the matrix-vector notation. However, note that all

matrix-vector-products are efficiently implemented via filter-

ing techniques in at least O(n log n) flops.

The approximation is carried out in three ways. First, the

bounding constraint is enforced by the functional τ (s) :=
n∑

i=1

τ(s(i)) where τ , is a penalty term defined as

τ(x) =

⎧⎨
⎩
|x− τu|q if x ≥ τu
|x− τl|q if x ≤ τl

0 otherwise,

(9)

with q > 1. The larger q, the higher the penalty and the tighter

the bound. For the presented image reconstruction algorithm

q = 2 yields very good fit to the range.

Second, since the CG algorithm requires a differentiable

cost function, we employ a smooth approximation of (7) that

extends the well known Huber loss term to the �p-pseudo-

norm. We define the p-Huber loss as

hp,μ(x) =

{ |x|p − κ1 if |x| ≥ μ
κ2x

2 otherwise,
(10)
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with κ1 = (1 − p
2 )μ

p and κ2 = p
2μ

p−2. Note, that hp,μ(x)
is differentiable for all p > 0 and μ > 0. Combining (7)

and (10) leads to the following approximation of the sparsity

measure for the image gradient

‖Ds‖TVp ≈
n∑

i=1

hμ,p

(√
(Ds)(i)2 + (Ds)(i+ n)2

)

=:‖Ds‖TVp,μ.

(11)

Ultimately, problem (8) is approximated in unconstrained

Lagrangian form as

minimize
s∈Rn

f(s) = 1
2‖Φs−y‖22+τ (s)+λ‖Ds‖TVp,μ. (12)

The Lagrange multiplier λ ∈ R
+
0 weighs between the sparsity

of the solution and its fidelity to the acquired samples accord-

ing to λ ∼ ε.
The CG method for minimizing (12) is initiated with s0 =

Φ�y and iteratively updates the current solution by

si+1 = si + αihi. (13)

The scalar αi ≥ 0 is the line-search parameter or the stepsize,

and hi is the descent direction at the ith iteration. Various line-

search techniques for finding αi that approximately solve

minimize
α∈R+

f(si + αhi) (14)

exist from which we choose backtracking line-search [11] as

it is conceptually simple and computationally cheap.

Let gi := ∇f(si) be the gradient of the cost function

(12) at the ith iteration and let the descent direction be initi-

ated with h0 = −g0. The authors showed in [12] that the

Hestenes-Stiefel formula

hi+1 = −gi+1 +
g�
i+1(gi+1 − gi)

h�
i (gi+1 − gi)

hi, (15)

is well suited for image reconstruction. The algorithm up-

dates si and hi as in (13) and (15) until the subsequently de-

fined stopping criterium is met.

Following [13], the algorithm terminates if the relative

variation of the regularizing function over the last l iterations

γ = (|g(Dsi)− ḡi|)/ḡi (16)

with ḡi = 1
l

l∑
k=1

g(Dsi−k), falls below a certain threshold

δ. Typically, we choose l ∈ [10, 20] and δ ∈ [10−6, 10−10],
depending on the required accuracy. The CG-method is sum-

marized in Algorithm 1.

Regarding the smoothing parameter μ and the Lagrange

multiplier λ, large values lead to fast convergence but yield bi-

ased reconstruction results. To overcome this problem, the re-

construction algorithm consists of repeating Algorithm 1 for

Algorithm 1 CG Algorithm

Input: y, s0, p, λ, μ, δ
Set: g0 ← ∇f(s0)
h0 ← −g0

for i = 0 to #InnerIter do
compute stepsize αi via backtracking linesearch

si+1 ← si + αihi

If γ < δ, then stop (cf. (16))

Update search direction hi as in (15)

end for
Output: si

a predetermined number of times, say N . It is initiated with

relatively large μ0 and λ0 and updates λk+1 = cλλk, μk+1 =
cμμk such that μN and λN take a predefined value μf � μ0

and λf � λ0. To that end, the continuation parameters are

chosen as

cλ :=
(

λf

λ0

)1/N

, cμ :=
(

μf

μ0

)1/N

. (17)

The complete reconstruction algorithm is summarized in Al-

gorithm 2.

Algorithm 2 Image Reconstruction via CG

Input: y, p, λ0, μ0, λf , μf , δ,N
Set: s0 ← Φ�y, compute cλ, cμ as in (17)

for k = 0 to N do
s� ← cg method(y, s0, p, λk, μk, δ)
λk+1 ← cλλk, μk+1 ← cμμk

s0 ← s�

end for
Output: s�

4. RESULTS

In this section we present some numerical experiments that

reveal the performance of our algorithm. The test images are

the Shepp-Logan Phantom (I1) from [2], a MRI brain image

(I2) Figure 1(a), a cartoon image (I3) Figure 1(d), and the

famous Cameraman (I4). The intensities of the images have

been scaled to [0, 255].
For I1 and I2, DFT is used for sampling, whereas RST

is used for I3 and I4. We measure the reconstruction qual-

ity in terms of the relative reconstruction error Rel = ‖s −
s�‖2/‖s‖2 and in terms of PSNR = 20 log (255n/‖s− s�‖22)dB.

Our method is compared with the NESTA algorithm [13].

Certainly, the same set of samples and the same stopping

criterium is used for all algorithms.

To illustrate the influence of p, we present the results of

our method with p = 0.9, p = 0.7, and p = 0.4. It can be

clearly seen in Table 1 that the proposed CG method outper-

forms NESTA in all situations for the chosen test images, in

particular for the noiseless Cartoon-like images I1 and I3 but
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Algorithm Phantom, I1 Brain, I2 Cartoon, I3 Cameraman, I4
m/n = 0.025 m/n = 0.25 m/n = 0.07 m/n = 0.2

PSNR Rel PSNR Rel PSNR Rel PSNR Rel

CG p = 0.9 37.3 5.51e−2 30.0 1.44e−1 28.4 7.2e−2 29.2 6.51e−2

CG p = 0.7 136.5 6.06e−7 31.1 1.27e−1 110.7 5.85e−6 29.7 6.32e−2

CG p = 0.4 173.7 8.31e−9 30.8 1.32e−1 87.4 8.52e−5 28.8 6.82e−2

NESTA 24.7 2.43e−1 28.8 1.68e−1 23.5 1.39e−1 28.5 7.15e−2

Table 1: Reconstruction quality in PSNR (in dB ) and the

relative reconstruction error (Rel); m: number of samples; n:

signal dimension.

also for the natural image I4. We like to mention two further

results from the literature on the reconstruction of I1 from

a few Fourier samples employing an �p like sparsity mea-

sure. In [7] the authors report a relative reconstruction error of

≈ 2e−3 with m/n = 0.038 and in [8] an error of ≈ 6.58e−10

with m/n = 0.035. Note that our method yields a recon-

struction error of ≈ 8.31e−9 with only m/n = 0.025, i.e.

30% less samples. Finally, Figures 1(b)-(e) present some re-

constructed images. It can be seen that our method yields less

blurry and smeared images than NESTA. The cartoon 1(d) is

quasi perfectly reconstructed.

From numerous experiments with various images we con-

clude that p = 0.7 is a universally good choice. Very good re-

construction results have been observed already after N = 3
iterations of Algorithm 1. Considering the smoothing pa-

rameter μ, an initial value of μ0 = 0.2 and final value of

μf = 1e−10 is well suited for general images. The value of λ
depends on the assumption about the noise level in the image.

In the noise free case, we recommend λk = μk.

5. CONCLUSION

In this paper we presented an algorithm for reconstructing im-

ages. The proposed method relies on the theory of compres-

sive sampling and requires only a few samples compared to

the image resolution. It is particularly well suited for Cartoon-

like images, which frequently occur in medical imagery. An

adaption to any sparsity measure based on the �p-pseudo-

norm, to other sparsifying transformations and also to other

signals is possible in a straightforward manner. A Matlab

code is available on the webpage www.gol.ei.tum.de.
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