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ABSTRACT

In this paper, we propose an automatic tracking method to ex-

tract blood vessels in retinal images. Seed points are firstly

picked out on a retinal image for initialization. Our algo-

rithm detects vessel edge points iteratively based on a sta-

tistical sampling model using a Bayesian method. At a given

step, local vessel’s sectional intensity profile is approximated

by a Gaussian model. New vessel edge points are detected by

using local grey level statistics and expected vessel structures.

For evaluation purpose, we use the STARE public database.

Experiments results show effective detection of blood vessels

when using the proposed method.

Index Terms— blood vessel extraction, Bayesian track-

ing, retinal image

1. INTRODUCTION

The automatic analysis of retinal blood vessels is a very im-

portant task in many clinical investigations and scientific re-

search. The early diagnosis of several pathologies, such as

arterial hypertension, arteriosclerosis or diabetic retinopathy

could be achieved by analyzing the vascular structures. Many

vessel extraction methods have been reported in the litera-

ture. The techniques related to retinal vessel extraction may

be roughly categorized into methods based on matched fil-

ters [1,2], adaptive thresholds [2], [3], intensity edges [4], [5],

region growing [6], statistical inferencing [7], mathematical

morphology [8], and Hessian measures [9].

Most of the work on vessel segmentation techniques can

be divided into two main groups: Pixel-based methods and

tracking methods. An advantage of tracking based methods is

the guaranteed connectedness of vessel segments whereas in

pixel processing based methods, connectedness is not guaran-

teed. Besides, as vessels are connected in the retina, tracking

methods can follow a whole vascular tree without examining

the vast majority of the image that does not contain vessel.

Among tracking methods, few probabilistic approaches have

been reported in the literature of vessel segmentation [10].

In a previous work [11], a statistical-based method was in-

troduced for retinal vessel segmentation, which needed man-

ual initialization. In this paper, a fully automated tracking-

based method is described. This approach takes into account

vessel edges detection on the whole retinal image, which was

not the case in our previous work, and handles different vessel

structures such as vessel bifurcation and crossing.

2. METHOD

2.1. General description

Our method is based on an iterative tracking algorithm. First,

a number of seed points are selected automatically on the reti-

nal image. Each seed point provides the initial vessel param-

eters, including initial vessel edge points, center point and

tracking direction. The tracking process starts from each of

the seed points and detects vessel edge points iteratively using

the proposed Bayesian method. The tracking process from

one seed point stops when current vessel ends or encounters

detected vessel segments. When all seed points are processed,

the proposed algorithm ends.

2.2. Selection of seed points

At the initialization, several seed points are selected automat-

ically by a method combining the grid lines and matched fil-

ter. First, the grid lines are drawn on a retinal image and seed

points candidates are selected on these lines [4]. Here, we

choose local grey level minima as candidates. We build a set

of Gaussian kernels [1] with different orientations (12 differ-

ent orientations spaced in 15 degrees from each other). Then,

we convolve the 12 oriented filters with the given retinal im-

age. If the highest response for a point candidate is above

a given threshold, it is considered as a seed point, and corre-

sponding filter direction is regarded parallel to local vessel di-

rection. A retial image and its selected seed points are shown

in Fig.1.

2.3. Statistical sampling

Our tracking method starts from each of the seed points. Now,

we consider a tracking process which is initialized by one of

the seed points. At iteration k, vessel edge points Ûk, V̂k, cen-

ter point Ok, direction
−→
Dk and diameter dk are known param-

eters. Ok is the middle point of [Ûk, V̂k],
−→
Dk heads towards−−−−−→

Ok−1Ok and dk = |ÛkV̂k|. As shown in Fig.2, a semi-ellipse
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(a) retinal image (b) grid lines and seed points (c) initial vessel directions

Fig. 1. Selection of seed points

Ck is defined to be centered on Ok and heading towards
−→
Dk.

Ck is considered as a dynamic search window restricting the

possible locations of new vessel edge points. Its major axis

ak is perpendicular to
−→
Dk while the minor axis bk is parallel

to it. In this study, ak = 2dk and bk = 1.5dk.
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Fig. 2. Dynamic search window

Nk edge points candidates which are numbered from 1 to

Nk are selected on Ck. In order to choose new edge points

among these candidates, we define configuration models by

a set of points candidates. There are three types of models:

normal, bifurcation and crossing, which combine points can-

didates on Ck with possible vessel’s structures at iteration k+1

(see Fig.3). Any Two points selected from the Nk ones are

called a normal configuration, which means a single vessel is

assumed to exist at iteration k+1. For a bifurcation config-

uration, four points are selected to describe the edge points

of two supposed new branches. Six points are needed for a

crossing configuration.

During the tracking process, local vessel structures and

edge points are estimated based on different configurations.

2.4. Vessel detection

At iteration k, Yk = {ys, s = 1, 2 . . . Nk} is the discrete

grey level profile corresponding to the Nk points on semi-
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Fig. 3. Three types of configurations

ellipse Ck. In our study, the probability of a configuration χ
is described by P (χ|Yk) [11]. Based on the Maximum a pos-
teriori (MAP) criterion, the best configuration χ̂ is the one

which has the maximum probability among all the configu-

rations, χ̂ = argmax
χ

{P (χ|Yk)}. Selected points candidates

used to define χ̂ are considered as new vessel edge points.

With Bayes’ rule we obtain P (χ|Yk) = P (Yk|χ)·P (χ)
P (Yk)

. Be-

cause P (Yk) does not depend on the configuration, it will be

disregarded. The best configuration is:

χ̂ = argmax
χ

{P (Yk|χ) · P (χ)} (1)

Assuming that the discrete grey levels on the semi-ellipse

are independent,

P (Yk|χ) =
Nk∏
i=1

P (yi|χ) (2)

We suppose the conditional probability model P (yi|χ) de-

scribes the variability of the ith point on Ck belonging either

to the background or to the blood vessel. We consider first the

case of a normal configuration χn. Two corresponding points

Mm1 and Mm2 are the mth
1 and mth

2 points on Ck. Likeli-

hood function is expressed as:

P (Yk|χn) =

m1−1∏
i=1

P (yi|b)
m2∏
m1

P (yi|v)
Nk∏

m2+1

P (yi|b) (3)
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where b and v denote background and vessel respectively.

In our method, Local vessel’s sectional intensity profile is

approximated by a Gaussian model, and local background is

assumed to have a constant intensity. For the given normal

configuration χn, true grey level of Mi, the ith point on Ck,

is estimated as:

μi =

{
G(Mi) if i ∈ [m1,m2]

Bk if i ∈ [1,m1[
⋃

]m2, Nk]
(4)

When i ∈ [m1,m2], Mi is assumed to belong to the blood

vessel. Its grey level is estimated by the Gaussian intensity

model: G(Mi) = (Ak − Bk) exp(− l2i
2σ2

χn

) + Bk. Ak and

Bk are local intensity parameters for vessel and background

respectively. Ak is the mean grey level of the region sur-

rounding local vessel center line. Bk is the mean grey level

of region in local background. li is the distance between Mi

and the straight line which passes through the middle point of

[Mm1 ,Mm2 ] and is perpendicular to
−−−−−−→
Mm1Mm2 . Spread pa-

rameter σχn = 1
4 |Mm1Mm2 |. If we assume the retinal image

affected only by additive white Gaussian noise ξ, the observed

grey level of Mi is supposed:

yi = μi + ξ =

{
G(Mi) + ξv if i ∈ [m1,m2]

Bk + ξb if i ∈ [1,m1[
⋃

]m2, Nk]

(5)

where ξv ∼ N(0, σ2
v) and ξb ∼ N(0, σ2

b ) are the Gaussian

noise in local blood vessel and background respectively. So

conditional probability model of χn is:⎧⎨
⎩P (yi|v) = 1√

2πσv
exp(− (yi−G(Mi))

2

2σ2
v

)

P (yi|b) = 1√
2πσb

exp(− (yi−Bk)
2

2σ2
b

)
(6)

And the likelihood function P (Yk|χn) is obtained by Eq.3.

For the case of bifurcation or crossing, sectional inten-

sity profile of new vessel branches are also estimated by the

proposed Gaussian intensity model. Likelihood functions are

computed similarly based on the four selected points and six

selected points respectively.

The a priori distribution of the vessel’s contour can be

modeled by means of a uni-dimensional Markov Chain. At

each iteration k, new edge points are assumed to be detected

based on the previous four iterations. The a priori probability

of a configuration χ is described as:

P (χ) = P
(
χ|χ̂(k − 1), χ̂(k − 2), χ̂(k − 3), χ̂(k − 4)

)
×P

(
χ̂(k − 1), χ̂(k − 2), χ̂(k − 3), χ̂(k − 4)

)
(7)

where χ̂(k−j), j = 1, 2, 3, 4 stands for the best configuration

at iteration k− j. At iteration k, P
(
χ̂(k−1), χ̂(k−2), χ̂(k−

3), χ̂(k−4)
)

is a constant. The way of computing P
(
χ|χ̂(k−

1), χ̂(k−2), χ̂(k−3), χ̂(k−4)
)

does not depend on the nature

of the configuration. Therefore, P (χ) will be disregarded,

and based on Eq.1 the best configuration at iteration k is:

χ̂ = argmax
χ

{P (Yk|χ)} (8)

If χ̂ is a normal configuration, the local blood vessel is con-

sidered to be linear and two candidate points used to define χ̂
are regarded as new vessel edge points. If χ̂ is a bifurcation

or crossing configuration, new vessel branches are found. In

this case, four or six selected candidate points according to

χ̂ are considered as initial edge points of new branches, from

which the tracking of vessel branches starts.

3. EXPERIMENTAL RESULTS

The proposed method is evaluated on the public STARE

database [2]. It contains twenty retinal fundus images cap-

tured by a TopCon TRV-50 fundus camera at 35o field of view

(FOV). These retinal images are segmented manually by two

independent specialists. In experiments, segmentation results

of the first observer is used as ground truth.

We tested our algorithm on 20 images of STARE database

[2]. In this study, we join detected edge points and fill regions

inside these obtained edge lines to get the segmented blood

vessels. Hoover’s [2] filter-based method is also applied for

comparison purpose. We performed a ROC analysis to assess

the accuracy. If a pixel in detected blood vessel belongs to

true blood vessel, it is called true positive pixel. Otherwise,

it is a false positive if it does not belong to true blood vessel.

True positive rate (TPR) is defined as the ratio between the

number of true positive pixels and the total number of pixels

in true blood vessel. False positive rate (FPR) is the ratio be-

tween the number of false positive pixels and the total number

of pixels in the true background. The evaluation accuracy is

defined as the ratio of the total number of correctly classified

pixels to the number of pixels in the FOV. Test results of the

proposed method, Hoover’s method and the manual segmen-

tations of the second observer are shown in Table.1. We can

Table 1. Evaluation results of different methods on 20 retinal

images of STARE database.

Method TPR FPR Accuracy

2nd observer 0.8949 0.0610 0.9354

Hoover [2] 0.6751 0.0433 0.9267

Proposed 0.6887 0.0438 0.9290

see that both the TPR and accuracy of the proposed method

are higher than Hoover’s. Besides, the FPR of our method

is even lower than manual segmentation results. An exam-

ple is given in Fig.4, which presents a retinal image from the
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(a) Retinal image (b) Ground truth (c) Proposed method

TPR=0.7442; FPR=0.0410

Accuracy=0.9338

(d) Hoover’s method

TPR=0.6924; FPR=0.0388

Accuracy=0.9317

Fig. 4. Segmentation results on retinal image (im0077) from the STARE database.

STARE database, the corresponding ground truth, and seg-

mentation results of two different methods. Initial seed points

of our method on this retinal image are shown in Fig.1(b).

The proposed method detected most of the vascular tree and

performed better than Hoover’s method.

4. CONCLUSION

We have introduced an automatic tracking method for ves-

sel detection in retinal images. The tracking algorithm starts

from a number of seed points selected all over the image. It

managed to segment main vascular trees and detect different

vessel structures. Tests of the proposed method on STARE

database show promising results. The necessary work in the

future includes improvements of the vessel sectional intensity

model and a deeper evaluation on more retinal images.
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[6] M. E. Martı́nez-Pérez, A. D. Hughes, A. V. Stanton,

S. A. Thom, A. A. Bharath, and K. H. Parker, “Reti-

nal blood vessel segmentation by means of scale-space

analysis and region growing,” In Proceedings of Inter-
national Conference of MICCAI, pp. 90–97, 1999.

[7] V. Mahadevan, H. Narasimha-Iyer, B. Roysam, and

H. Tanenbaum, “Robust model-based vasculature detec-

tion in noisy biomedical images,” IEEE T. Inf. Technol.
Biomed., vol. 8, no. 3, pp. 360–376, 2004.

[8] C. Heneghan, J. Flynn, M. O’Keefe, and M. Cahill,

“Characterization of changes in blood vessel width and

tortuosity in retinopathy of prematurity using image

analysis,” IEEE T. Inf. Technol. Biomed., vol. 6, no. 4,

pp. 407–429, 2002.

[9] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and

B. van Ginneken, “Ridge-based vessel segmentation in

color images of the retina,” IEEE Trans. Med. Imaging,

vol. 23, pp. 501–509, 2004.

[10] S. Zhou, W. Chen, Z. Zhang, and J. Yang, “Seg-

mentation of coronary angiograms based on probabilis-

tic tracking,” International Conference on Automatic
Bioinformatics and Biomedical Engineering, vol. 25,

no. 9, pp. 1–4, 2009.

[11] Y. Yin, M. Adel, M. Guillaume, and S. Bourennane, “A

probabilistic based method for tracking vessels in reti-

nal images,” IEEE International Conference on Image
Processing, pp. 4081–4084, 2010.

712


