
 
Figure 1. Topography of a wrinkle and the optical section
of RCM which is parallel to the skin surface 
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ABSTRACT 

Reflectance confocal microscopy (RCM) is a non-invasive 
and in-vivo imaging modality, which can take images from 
different depths of the human skin. A challenging problem 
is to detect a clinically important subsurface section of the 
skin, the Dermis/Epidermis junction, in RCM images. This 
is a tough problem because of the huge variation of texture 
and intensity features across both intersubject and 
intrasubject tissues. On the other hand, there’s almost no 
wrinkle-free part of the skin. This well-known phenomenon 
can be used as a histological clue for guessing the 
probability of being Dermis or Epidermis in the neighboring 
regions. In this paper, we develop a two-step wrinkle 
detector for RCM images. By analyzing the results on 
different RCM images, we conclude it has high sensitivity 
and specificity, but a relatively lower Jaccard index. 
 

Index Terms— Reflectance confocal microscopy, 
Dermis-Epidermis junction, wrinkle detection

1. INTRODUCTION 
 
Reflectance confocal microscopy (RCM) is an in-vivo 
imaging modality which takes advantage of different 
reflectance factors of various materials by radiating a light 
beam and spatially filtering the beam to measure the 
reflectance intensity of the focused voxel. It uses optical 
sectioning to give a complete image of the volume. Skin 
imaging is one of the main applications of RCM which can 
be done in real-time and does not need the extraction of 
sample tissue as in biopsy, which is invasive, time-
consuming, and destructive for cells structure. 
 On the other hand, classification of the human skin is of 
specific interest for the clinicians, since many fatal skin 
diseases start growing from the boundary of the first two 
superficial layers, Epidermis and Dermis. Generally, this 
type of classification is very tough because of large texture 
and intensity feature variations across intersubject and 
intrasubject tissues. So we need to somehow add 

histological information about different structures in the 
skin in order to get access to more reliable clues about the 
Dermis-Epidermis Junction (DEJ) location. Wrinkles are 
well-known skin phenomena that can provide us with such 
additional information. It’s been shown that wrinkles have 
influence on the shape of DEJ in its surrounding regions [2] 
(see Figure 1). 

In [1] Kurugol et. al employed a local texture-based 
classification method by using Locally Smooth SVM to 
detect the DEJ. However, that method excludes the wrinkles 
in the first step and does the classification for the rest of the 
voxels. Here, as a first step towards involving histological 
information, we are interested in detecting the wrinkles as 
helpful structures that can be detected as a preprocessing 
step for DEJ localization in RCM images. 

To the authors’ best knowledge there has not been any 
attempts to automatically detect wrinkles in RCM skin 
images. Usually wrinkles exhibit themselves as valleys in 
three-dimensional visualization of pixel intensity elevation. 
From this perspective, they are similar to vessels and one 
might expect to find them by using standard ridge/valley 
detection algorithms [5]. In detecting curvilinear structures, 
such as Keratin intermediate Filaments [3], typically ridges 
are enhanced using methods such as Frangi and Satu filters, 
both of which analyze the eigenvectors of the Hessian 
matrix in each pixel to determine whether the pixel is on the 
ridge or not. In our application eigenvector analysis alone 
cannot be sufficient, since, as discussed above, mild or 
intense textures inside the wrinkles makes this type of ridge 
detection and enhancement filters to fail. Overall, although 
they provide satisfactory results in some wrinkle regions, 
generic vessel extraction filters will lead to failure in many 
others in our experience. The major challenge is the frequent 
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occurrence of highly textured regions within some parts of 
the wrinkles due to another histological phenomenon called 
horny plug [2]. This structure makes wrinkles appear very 
similar to non-wrinkle parts of the RCM image. 
Furthermore, the wrinkle boundaries are less defined in the 
edge distribution when compared to tubular structures such 
as neurons, airways, or blood vessels. Moreover, in many 
cases we cannot distinguish between wrinkles and ordinary 
regions except by looking at the continuity of neighboring 
textures.  

For these reasons, using a single-step global algorithm 
is challenging; instead, we will develop a two-step 
algorithm, which combines both global (the first step) and 
local (the second step) information to perform wrinkle 
classification. 
 

2. METHOD 
 
Our method has two steps: Initialization and Finalization. In 
the former one we provide initial regions which highly 
probably belong to a wrinkled area, then we grow this 
region to finalize the estimated wrinkle. In both steps we use 
texture features to exclude regions with high frequency 
intensity fluctuations from the detected area. For this 
purpose, we employ the energy of wavelet packet 
coefficients [4] at level three1, denoted by  for 
pixel at coordinate . As Figure 1 shows, the edges of 
wrinkles are actually the most superficial layer of the skin, 
which has a relatively high reflectance factor and thus 
appear brightly in RCM images. Therefore, if we start from 
one point within the wrinkle and grow the initial region 
based on texture features, we expect that the selected region 
will remain inside the wrinkle and will not leak out because 
of this natural boundary. Keeping this in mind, we develop 
the algorithm such that it starts by selecting some initial 
regions with high probability of belonging to wrinkles and 
then try to grow this region in order to cover rest of the 
wrinkle details. 
 
2.1. Initialization 
 
The primary feature of wrinkled regions, despite occasional 
high intensity variations, is their darkness. We choose to 
select a subset of wrinkled low-intensity regions as the 
initialization since it’s easier and less risky.  

Let us denote the input image by . For the rest of 
the paper we denote  as the set of superpixels yielded 
from applying Watershed-based segmentation on the 
thresholded image  defined later;  as the subset 
of superpixels, which are larger than a pre-specified 
threshold  (empirically determined as 150 pixels in our 
case);  and  as the sets of all pixels fallen in  and 

 respectively and  as the set of pixels within actual 

                                                 
1 This is compatible with the current resolution of our database; for 
lower resolution we may find it better to change the level. 

wrinkles. Finally  stands for index of superpixels in an 
arbitrary set  and | | is an operator over sets that returns 
number of members; since each  is a set of pixels  is 
the number of pixels in it. First of all we smooth the floor of 
wrinkle valleys by applying a shifted step function over the 
image: 

 (1) 

If the shift value t is selected properly, then we will have a 
relatively smoother valley in the wrinkles, while few 
number of non-wrinkle pixels would be shrunk to zero. This 
leads to having a piecewise connected floor of the valleys, 
which can also be viewed as connected sources. Hence if we 
use a watershed-based segmentation [6] we will get huge 
superpixels for the connected sources and smaller ones in 
the textured regions. Then by simply picking out sufficiently 
large superpixels, we can generate the initialization area. 
Clearly choosing the value of t is very critical in the result of 
this step and consequently in the success or failure of the 
whole algorithm. We adjust it adaptively based on the local 
minima of the intensity histogram of the image. 
 Table 1 shows the initialization algorithm; the threshold 
is chosen among the histogram minima (the set M) that are 
lower than the intensity mean by minimizing the criterion 
fraction  shown in the table. As we go toward higher 
values of t bigger superpixels will be created but the 
probability of leakage into the non-wrinkle parts also 
increases; we also don’t want the superpixels to be too small 
(shrinkage) because then our initialization region doesn’t 
have sufficient coverage for feeding the finalization step. In 
order to prevent leakage, we keep texture energy of the 
selected region small by involving the energy of wavelet 
packet coefficients of level three (computed by means of 
built-in functions of MATLAB), while trying to moderate 
shrinkage by introducing the average area of the selected 
superpixels in the denominator of . 

If there are considerable pixels belonging to wrinkles 
there would be clear minima and maxima in the lower half 
of the histogram; in the case of extreme smoothness when 
no minima is found we divide the whole image into four 

 

Table 1. Algorithm Initialization 

 = smoothed histogram of  using Gaussian kernel
M = {

for t : 1  
     watershed( ) 
            { } 
           { } 
            
end 

 watershed( ) 
{ } 

{ } 

706



 
   (a)        (b) 
Figure 2. (a) Original wrinkled skin image, (b) expert’s label 
(red) and resulted segmentation of the algorithm (green) 
 

Table 2. Evaluation of the algorithm’s performance 

Mean STD

Sensitivity 0.88 0.08 
Specificity 0.97 0.02 

Jaccard index 0.72 0.13 
WJ index ( ) 0.9 0.15 

 
 

 
 
Figure 3. Average WJ index for different cut-off distances; 

 corresponds to the original Jaccard index. 

subimages and apply the same algorithm to each of the 
divisions which gives us four initializations; then the final 
result would be their union. Finally if we couldn’t find any 
minima for any of the subimages we conclude that the input 
image doesn’t contain any wrinkled region. 

 
2.2. Finalization 
 
We barely can find cellular or collagen textures within the 
wrinkles, as severe as in Epidermis or Dermis tissues. Based 
on this fact, we perform superpixel-wise region growing 
algorithm to expand the initialized region. Even if there are 
non-wrinkle regions with textural features as mild as the 
wrinkled parts, the boundaries will most probably prevent 
leakage to them because of their high reflectance property 
mentioned before. 

Let  and  be the set of superpixels yielded from 
applying Watershed on the original and the over-smoothed 
image . To avoid using the whole superpixels 
in  for region-growing algorithm which contains large 
number of irrelevant superpixels we only consider the ones 
that are fallen inside the giant superpixels of : 

 (2) 
Since high frequency components are more discriminative, 
we exclude the coefficients corresponding to the extremely 
low frequencies from our texture feature vector and denote 
the resulting vectors by . Initialized region  can 
be characterized by its truncated textural energy mean: 
 . (3) 
Every time we take the superpixels in  that are located on 
the boundaries of the new region and add the ones which 
have similar texture feature vectors with respect to ; 
more specifically experimental threshold of 5 is put over the 
Euclidean distance between  and feature vector of the 
candidate superpixel. The iterations will be repeated until all 
candidates in  are tried or there is no candidate superpixel 
in the boundaries. 

 
3. EXPERIMENTAL RESULTS 

Our database includes 40 RCM images containing wrinkles 
from different sites of the body such as arm, knee, abdomen, 
forehead and back. The images are chosen so that they cover 
as many types of wrinkles’ appearances as possible. They 
have resolution of 1μm and are from different depth of the 
skin. For evaluation purpose, we compute sensitivity ( ) 
and specificity ( ) for every image and report their mean 
and standard deviation (STD) (see Table 2). According to 
these measures, 88% of our wrinkle labels and 97% of our 
non-wrinkle labels were correctly classified. Wrinkles 
usually occupy a small portion of the whole image, therefore 
the number of true negatives (TN), considering wrinkle as 
the positive event, are always much bigger than number of 
falsely negatives. This causes specificity to be very high. In 
order to investigate the percentage of FN more precisely we 

also computed the Jaccard index (  where TP is 
number of true positives), which is the portion of the true 
wrinkle captured by the algorithm (detection rate). Table 2 
reveals that the result is less than  as expected.  
 Note that we aim to use the wrinkle labels as source for 
developing prior probability models for the surrounding 
regions specifically regarding the location of the DEJ from 
the surface. In many cases undetected wrinkle parts are too 
close to the detected parts such that their surrounding 
regions appear very closely; thus missing a few pixels from 
a detected wrinkle region would have less impact on the 
eventual goal of DEJ localization than an entirely missed 
wrinkle.  
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 Figure 2 shows a sample image from the dataset with 
the expert’s labels and the results of the algorithm. It can be 
seen that part of the wrinkle is missed in the upper right side 
of the image; however it’s in the neighbourhood of the true 
positives the algorithm generated. The existence of 
sufficient true positives in the vicinity should help form a 
sufficient prior about the location of DEJ in this region 
despite missed wrinkle pixels. We defined weighted Jaccard 
(WJ) index as below to take into account the distance 
between missed wrinkles and true labels: 
 , (4) 

where  is the Butterworth bandpass filter in the 
distance domain: 
  , (5) 
in which  is the shortest Euclidean distance between 
the pixel location (  and true labels.  is called cut-off 
distance and is defined as a distance to which we assign 1/2. 
Using this filter we actually weigh down the missed 
wrinkles close to TP region based on their distance and 
emphasize distant ones by effectively counting pixels in FN 
which are further than . Table.2 shows the result for 

=15. In Figure 3, average WJ is plotted for different 
values of . It can be seen that even for low values of  
we have a big jump in the mean implying that there are 
many undetected labels which are highly close to TPs such 
that they won’t leave big effects in the future prior 
specification. 
 

4. DISCUSSION AND CONCLUSION 
 
We performed binary segmentation of RCM images of 
human skin to decide whether a region belongs to a wrinkle 
or not. This is an important issue because the existence of 
wrinkles affects the localization of Dermis-Epidermis 
Junction – a clinically very important region to investigate 
for various skin disorders and diseases. This wrinkle 
detector can be used as a preprocessing step that gives the 
surrounding regions of a wrinkle a relatively higher prior of 
belonging to the Epidermis. This is going to be quite useful 
in cases that we’re in risk of misclassifying the regions 
around the wrinkles as Dermis because of reasons such as 
low resolution or imaging’s artifacts.  
 The results indicate that the algorithm is able to achieve 
high sensitivity and specificity in addition to a sufficiently 
large Jaccard and Weighted Jaccard index for our purposes. 
That purpose is to detect wrinkles and use these pixels in 
building a prior model for skin surface, based on which the 
Dermis-Epidermis Junction can be found in conjunction 
with RCM imagery in real time. While the algorithm cannot 
detect all wrinkle pixels due to discontinuous wrinkle parts 
and anomalous skin structures which exhibit appearances 
very similar to non-wrinkle regions, the results are 
sufficiently accurate to build on. 
 The initialization step is designed such that it wouldn’t 
put any seed points in low-confidence regions. Thus if there 

are discontinuous wrinkles which are recognized as 
suspicious regions they might be missed due to the region 
growing algorithm not being able to penetrate into these 
regions in the second step. By this type of initialization we 
are actually doing a conservative segmentation since the 
potential clinical cost of misdetection is much more than 
missing wrinkles. In particular, the existence of a wrinkle-
labeled pixel will reduce the probability of having the DEJ 
in its vicinity; DEJ is exactly where clinically important 
events, such as malignant tumors, occur. Consequently, 
inserting false wrinkle pixels into the remainder of the 
algorithm pipeline might have serious negative outcomes. 
For this reason, missing a wrinkle extension at the cost of 
weakening the prior is acceptable. 
 The WJ index that we introduced also indicates that 
most of the missed wrinkle pixels are located near the true 
positives. Therefore, in these regions, the algorithm would 
likely be able to form a sufficiently strong prior anyway. 
 Although the initial performance we obtained in this 
study is satisfactory to move to the next step of detecting the 
DEJ, the wrinkle classifier could be further improved by 
incorporating additional features such as vesselness features 
based on eigenstructure of the local Hessian matrices. 
 

5. REFERENCES 
 
[1] S. Kurugol, J.G. Dy, D.H.Brooks and M. Rajadhyaksha, “Pilot 
Study of Semi-automated Localization of the Dermial/Epidermal 
Junction in Reflectance Confocal Microscopy Images of Skin,” 
Journal of Biomedical Optics, March 2011. 
 
[2] J.L. Contet-Audonneau, C. Jeanmaire, and G. Pauly, “A 
Histological Study of Human Wrinkle Structure: Comparison 
between Sun-exposed areas of the Face, with or without Wrinkles, 
and Sun-protected Areas,” British Journal of Dermatology, pp. 
1038-1047, 1999. 
 
[3] G. Herberich, R. Windoffer, R. Leube, T. Aach, “3D 
Segmentation of Keratin Intermediate Filaments in Confocal Laser 
Scanning Microscopy,” IEEE Engineering in Medicine and 
Biology Conference, Boston, pp. 7751-7754, 2011. 
 
[4] Mallat, S., A Wavelet Tour of Signal Processing, Academic 
Press, New York University, 1998. 
 
[5] C. Kirbas and F. Quek, “A Review of Vessel Extraction 
Techniques and Algorithms,” ACM Computing Surveys, pp. 81-
121, 2004. 
 
[6] F. Meyer, “Topographic Distance and Watershed Lines,” 
Signal Processing 38, pp. 113:125, 1994. 

708


