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ABSTRACT

Recently there has been increasing interest in estimating the distri-
bution of relaxation times contributing to a magnetic resonance sig-
nal. This paper shows that it is impractical to estimate the spread of
such a distribution from typical measurements. Instead, a Bayesian
estimator is developed for a discrete distribution, which is very ro-
bust to noise. Although the distribution spread is not modelled, the
estimates capture the main features of the distribution such as the
mode locations and often provide improved myelin water fraction
estimates in simulation examples.

Index Terms— MRI, T2 relaxation, myelin water fraction, mul-
tiexponential analysis

1. INTRODUCTION

The signal decay in magnetic resonance imaging (MRI) has been
shown to arise from a distribution of relaxation time constants, par-
ticularly for myelinated tissues [1]. Consequently, the accurate esti-
mation of the distribution of T2 relaxation time constants (or ‘relax-
ation times’) is of particular interest to study white matter diseases
such as multiple sclerosis, which directly affects myelination. It is
understood that the water within the myelin sheath has a relatively
short T2 (∼10–20ms) compared to that from intracellular and extra-
cellular water [2]. This property is used to quantify the amount of
myelin within a voxel, known as the myelin water fraction (MWF),
derived directly from the relaxation time distribution.

Previous attempts at estimating the distribution have involved
fitting a large number of decaying exponentials using the nonnega-
tive least squares (NNLS) algorithm [3]. The problem is inherently
ill-conditioned and regularisation is needed to improve the sensitiv-
ity to noise. This regularisation introduces bias that favours less
complex distributions and often the number of peaks is underesti-
mated at clinically achievable signal-to-noise ratio (SNR) values.

Alternatively, a parametric model consisting of three discrete
pools was proposed in [2] and subsequently tested in [1]. The es-
timator for this model was a Quasi-Newton fitting algorithm. How-
ever, in those simulations, the algorithm was initialised to the true
values and poor performance was observed for initialisations outside
10% of the true values.

In this work, we analyse a parametric, yet continuous, model
for the unknown distribution. The model consists of a mixture of
inverse-gamma components, each with a weight, location and spread
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parameter. We show that estimation of such a model is impractical
for clinical experiments and focus our attention on estimating a dis-
crete distribution similar to [2]. To this end, we propose a robust
Bayesian algorithm to overcome the problems associated with low
SNR and algorithm initialisation. Finally, we compare the perfor-
mances of our algorithm and NNLS for the purposes of myelin water
fraction estimation.

The paper is organised as follows. In Section 2 we discuss
the three models under consideration: non-parametric (NNLS), an
inverse-gamma mixture and discrete relaxation times. In Section 3
we calculate the lower bound on estimation performance for the
parametric models. Finally, in Sections 4 and 5 we present the esti-
mation algorithm and corresponding simulations, respectively.

2. THEORY

The unknown distribution of relaxation times is observed through
the amplitudes of the acquired echo signals. The measurements are
described by the integration of the decaying signals from each con-
tribution,

y(ti) =

∫
f(τ)e−ti/τdτ + vi (1)

where f(·) is the distribution of relaxation times, ti is the echo time
and vi is assumed to be an i.i.d. Gaussian random variable with
known variance, σ2. The problem of estimating a continuous dis-
tribution function from a finite number of observations is inherently
ill-posed. In practice, we are forced to make some assumptions or
approximations about the specific form of the distribution, f . In this
work we consider three such approximations and examine the corre-
sponding estimation performance.

The first approximation is to grid the parameter space. In this
case, a large but known sequence of relaxation times is defined,
τ1, . . . , τm, covering a physically plausible range of times. This
approximation is described by a distribution made up of m delta
functions,

f(τ) =
m∑

j=1

wjδ(τ − τj) (2)

The corresponding signal model is obtained by combining (1) and
(2),

y(ti) =
m∑

j=1

wje
−ti/τj + vi (3)
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We can construct a vector of measurements, y = [y(t1), . . . , y(tn)]′

and weights, w = [w1, . . . , wm]′ and rewrite (3) as a matrix equa-
tion,

y = Aw + v (4)

where A is an n × m matrix with elements, Ai,j = e−ti/τj . The
problem of estimating the distribution is reduced to estimating the
vector of weights, w. Magnetic resonance experiments are generally
expensive and time-consuming. This means the number of measure-
ments is often significantly smaller than the number of weights we
wish to estimate (n < m) and the system is underdetermined. Con-
sequently, a least squares estimator that solves (4) will have poor
noise performance. The solution proposed in [3] is to regularise the
optimisation and solve,

minimise ‖y − Aw‖2
2 + λ‖Cw‖2

2

subject to w > 0
(5)

where C contains additional constraints (such as smoothness),
weighted by the regularisation parameter, λ.

An alternative formulation considered in this paper is the para-
metric estimation of a mixture of distributions. We propose the
distribution is made up of a small number of modes, each with an
inverse-gamma distribution. The inverse-gamma distribution is par-
ticularly well-suited to our problem: it can approximate a wide range
of distributions; it has positive support, which is suitable for relax-
ation times; and importantly it leads to a tractable integration in (1).
The inverse-gamma mixture is given by

f(τ) =
m∑

i=1

wj

β
αj

j

Γ(αj)
τ−αj−1e−βj/τ

(6)

The three parameters, wj , αj , βj , characterise the weight, location
and scale of the j th mode, respectively. Substituting into the signal
model (1) yields,

y(ti) =
m∑

j=1

wj

(
βj

ti + βj

)αj

+ v(ti) (7)

Analogous to the non-parametric model, imposing this form on the
distribution reduces the estimation problem to finding 3m parame-
ters. In this way, this model can be seen as a parametric alternative to
NNLS. An alternative parameterisation is to characterise each mode
in the mixture by the mean and variance of the inverse-gamma dis-
tribution, given by

νj =
βj

αj − 1
; ρ2

j =
β2

j

(αj − 1)2(αj − 2)
(8)

This parameterisation is useful to analyse the fundamental ability to
estimate the location and spread of the relaxation times.

In the limit as ρ2
j → 0 for fixed νj = τj , the distribution ap-

proaches a simple discrete model, consisting of a small number of
weighted Dirac spikes at relaxation times, τj , j = 1, . . . , m. The
corresponding signal model in (7) becomes

y(ti) =
m∑

j=1

wje
−ti/τj + vi (9)

This model has been used previously for relaxation rate estimation
[1]. It is fundamentally different from the non-parametric form in
(3), since the times τj are unknown and must be estimated along
with the weights.
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Fig. 1. The estimation bounds for the spread and location parameters
of different parametric distributions.

3. ESTIMATION BOUNDS

The minimum variance of an unbiased estimator is given by the
Cramer Rao Lower Bound (CRLB). This bound is often used as a
benchmark to compare estimators, but an equally valid use is to anal-
yse the uncertainty in an estimation problem. It reveals our ability to
estimate the parameters for a given experimental setup. Of particu-
larly interest in this work, is the effect of the distribution spread on
parameter estimation.

Although we calculate the Fisher Information Matrix (FIM) for
the signal model with the initial parameterisation (in terms of αj and
βj), it is much more instructive to consider the estimator’s perfor-
mance in terms of the location and spread of relaxation times. Thus
we use the relationships in (8) to transform the matrix according to

I(ν, ρ) = J ′I(α, β)J (10)

where J is the Jacobian matrix of the mapping associated with (8).

We calculate the CRLB for the parameters of three different
distribution models. Firstly the inverse-gamma mixture parameters,
wj , νj and ρj , representing the weight, location and spread, respec-
tively. We also consider a discrete distribution with parameters for
the weights, wj , and locations, τj . Finally for comparison we con-
sider a gamma mixture with the spread parameter fixed and known
leaving only the weight, wj , and location, νj , to be estimated. We
evaluate the CRLB for biologically realistic distributions, consisting
of two modes: a slow mode with ν1 = τ1 = 100ms, ρ1 = 10ms
and a fast mode with ν2 = τ2 = 20ms, ρ2 = 10ms. These features
are common for white matter tissue in the cortex. The experimen-
tal setup is typical of a MR sequence optimised for relaxation time
estimation, consisting of 32 echoes with echo times equally spaced
between 10ms and 506ms.

Fig. 1 displays the CRLB for the parameters of the first mode
of the mixture distribution under different model assumptions. The
plot demonstrates that the spread parameter is exceedingly difficult
to estimate. For an SNR of 20, the spread of the slow mode can
only be estimated with a standard deviation of ∼500ms, five times
greater than the value of the location parameter. These results also
highlight that estimating the location is much harder when the spread
is unknown.

To achieve useful estimates of the weight, location and spread
parameters of the distribution, the SNR would need to be ∼3000, far
beyond that achievable on a clinical MR system. Alternatively we
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would need to collect in the order of 105 echoes, which would bloat
the acquisition time unsatisfactorily. Similar plots for the second
mode or different parameter values yield the same conclusions, we
cannot estimate the spread of the relaxation time distribution.

The reason for such poor estimation performance is that a large
number of distributions will produce very similar measurements. For
reasonable noise levels, the difference is indistinguishable and we
cannot pick the correct spread model. This result is not specific to
an inverse-gamma distribution and holds for other parametric distri-
butions that incorporate a spread.

Since we have no means to estimate the spread parameter, we
must assume a known spread or adopt a discrete distribution model
that doesn’t model it. We will see that the discrete distribution is
suitable for estimating the main contributions to the signal.

4. ESTIMATION ALGORITHM

Surprisingly, the simple model in (9) does not lend itself well to
a simple estimation algorithm. The nonlinear relationship between
the parameters and the signal creates a poorly behaved cost function,
with local minima and large regions in parameter space where the
cost function is essentially flat. These features will be problematic
for a naı̈ve gradient-based optimisation algorithm.

We adopt a Bayesian framework that leads to a numerically ro-
bust algorithm and allows us to incorporate prior information about
the biological tissue. The cornerstone equation is Bayes rule,

π(x|y) =
�(x|y)π0(x)

π(y)
(11)

where x is a vector of unknown parameter. The numerical chal-
lenge of computing (11) for a relatively wide prior, π0, and narrow
likelihood, �, is overcome using a technique known as progressive
correction [4]. Although we do not use a Monte Carlo approxima-
tion, we apply the same principle of ‘flattening’ the likelihood and
iteratively correct our estimate of the posterior. We define a schedule
of s corrections, γ1, . . . , γs, with the intermediate posterior at the j th

correction step given by

πj(x|y) = 1
ηj

�γj (x)πj−1(x|y) (12)

where ηj is a normalising constant. When
∑

j γj = 1, the final
posterior πs is the required one defined in (11). To make the com-
putation in (12) tractable, we use a linearised approximation of the
likelihood and a Gaussian prior with mean, μ0, and covariance Γ0.
In this case, we do not compute the exact posterior, but rather a Gaus-
sian approximation to it. The approximate likelihood is obtained by
linearising the nonlinear function, h(·), which describes the signal
model in (9),

�̂γj (x) = N (y; h(μj−1) + J(μj−1)(x − μj−1);
1
γj

Σ); (13)

where the J is the Jacobian of the function h(·). Analogous to the
Kalman filter, the posterior at each step is a Gaussian with mean and
variance given by,

μj = μj−1 + Kj(y − h(μj−1)) (14a)

Γj = (I − KjJ)Γj−1 (14b)

where Kj = Γj−1J
′(JΓj−1J

′ + 1
γj

Σ)−1.

Initially, this approximation will be poor but the likelihood will
be wide due do severe flattening. As the algorithm progresses, the
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Fig. 2. The RMSE at various SNR values for two estimators: a
gradient-based optimisation and the proposed Bayesian estimator.

approximate posterior approaches the true posterior and the lineari-
sation becomes more accurate. This process is very similar to sim-
ulated annealing in optimisation and we will see that the resulting
algorithm is very robust to local minima, particularly at low SNR.
The final algorithm is described in Algorithm 1

Algorithm 1: Estimation Algorithm

for j = 1 . . . s do1
Calculate: J(μj−1) and Kj2

Calculate μj and Γj according to (14)3

Return estimate: x̂ = μs4

The effectiveness of the algorithm is demonstrated by calculat-
ing the empirical MSE of the estimates. A discrete version of the dis-
tribution in Section 3 was simulated. That is, 32 measurements were
generated from a two mode distribution with w1 = 0.7, w2 = 0.3,
τ1 = 100ms and τ2 = 20ms. Independent Gaussian noise was
added and the estimation was performed using Algorithm 1 and a
gradient-based optimisation algorithm for comparison. The proce-
dure was repeated for 500 independent noise realisations for each
of the 12 SNR values to generate a plot of the root-mean-square
error (RMSE). Fig. 2 illustrates the sharp degradation in the per-
formance of the gradient-based optimisation algorithm for low SNR
values. In this case, the problematic cost function makes finding the
global minimum difficult. Conversely, the progressive correction im-
plemented in the Bayesian algorithm overcomes this limitation and
performs well at all SNR values.

5. SIMULATIONS

The algorithm developed above assumes a known number of modes
in the distribution mixture. We relax this assumption by performing
model selection using Akaike’s information criteria [5]. This selects
the number of modes that best describes the data, with an appropriate
penalty for increasing model complexity. Technically, model selec-
tion should be performed using the maximum likelihood estimate
(MLE) of each candidate model; instead we use the Bayesian algo-
rithm above. Under certain non-restrictive conditions, the Bayesian
estimate asymptotically converges to the MLE [6]. This justifies the
use of the proposed algorithm, and the robustness it provides.
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Fig. 3. The MSE of the myelin water fraction using different estima-
tion algorithms.

Simulations were performed to analyse the effect of the discrete
distribution assumption on myelin water fraction estimation. For
comparison, regularised NNLS was performed with an optimal λ
chosen according to the “least squares-based constraint” [7]. This it-
erative strategy selects λ such that the χ2 misfit from the regularised
solution is 1% larger than the χ2 for the unregularised solution. The
myelin water fraction was defined as the integral of the estimated
distribution over the range 0−50ms, divided by the total mass of the
distribution. The true distribution was the inverse-gamma form in
(6), with a slow component (w1 = 0.7, ν1 = 100ms, ρ1 = 5ms)
and a fast component (w2 = 0.3, ν2 = 20ms, ρ2 = 5ms), typical
of a voxel located in white matter.

Fig. 3 demonstrates that for a wide range of SNR values, the
myelin water fraction estimated using a simple discrete model is su-
perior to that obtained from an optimally regularised NNLS algo-
rithm. At very low SNR, regularised NNLS is able to trade a large
amount of variance for a small amount of bias, whereas the estimated
discrete distribution may have its smallest mode larger than 50ms,
resulting in a MWF estimate of zero and a large MSE.

Fig. 4 illustrates the estimation results for 200 trials at an SNR
of 100 (the noise standard deviation is 1% of the signal amplitude).
The figure highlights the inability of NNLS to accurately estimate
the true spread, as predicted by our analysis. The regularisation in-
troduces a bias into the shape of the estimated distributions. Par-
ticularly relevant is the location of the peak of the fast component,
which is significantly underestimated. Conversely, the simple dis-
crete model provides relatively unbiased estimates for the locations
and weights of the distribution components. Indeed, at this SNR, for
the purposes of myelin water fraction estimation, Fig. 3 indicates the
estimates obtained from the discrete model are more accurate than
those from the biased NNLS distribution.

6. DISCUSSION

This work considered a parametric alternative to the commonly used
NNLS algorithm for the estimation of relaxation time distributions.
The analysis demonstrated that the measurements have a weak de-
pendence on the spread of the T2 components and consequently es-
timating such spread is impractical. Although NNLS attempts to
estimate a continuous distribution, the spread is more dependent on
the regularisation parameter than the true distribution. Additionally,
we have illustrated that this regularisation adds a bias to the esti-
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Fig. 4. Estimated T2 distributions at an SNR of 100, under different
model assumptions. The mean distribution and standard deviation
from 200 trials are indicated by thick and thin lines, respectively.
The discrete model weights are scaled by 0.1 for display.

mator, which is unsuitable for quantitative analysis such as myelin
water fraction estimation.

We adopt a simple model consisting of discrete relaxation times.
The model has been previously proposed together with a gradient
based MLE estimator, but this did not demonstrate robust perfor-
mance at clinically achievable SNR values. The Bayesian algorithm
overcomes the problems associated with the MLE cost function and
the corresponding estimator’s sensitivity to noise and initial esti-
mate. This means the estimator is well poised for practical appli-
cations. The discrete model, although naı̈ve to distribution spread,
proved to provide accurate estimates of the location and weights of
the distribution modes. The corresponding myelin water fraction
estimates were more accurate for a broad range of SNR values, jus-
tifying further research into parametric models for distribution esti-
mation.
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