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ABSTRACT
In this paper we present a novel point set registration algo-

rithm based on the robust Gaussian Mixture Model(GMM).

We take advantage of a robust estimation to weigh the noise

component in GMM. Moreover, a bidirectional EM process

is introduced to model outliers in both point sets in contrast

to traditional methods. The performance of the method is

demonstrated and validated in carefully designed synthetic

data and point sets extracted from medical images. Results

show that the proposed method can improve the robustness

and accuracy as compared to the traditional registration tech-

niques.

Index Terms— GMM, EXPECTATION MAXIMIZA-

TION(EM), ROBUST ESTIMATION, NON-RIGID REGIS-

TRATION

1. INTRODUCTION

The registration of point set is a fundamental problem in com-

puter vision, medical image analysis, pattern recognition ar-

eas and has been extensively studied in the motion tracking,

shape matching and image interpolation. The goal of regis-

tration is to find meaningful correspondence between two dif-

ferent point sets and determine the transformation that maps

one set to the other. These point sets are extracted from input

images representing feature points in these image.

The point set registration has attracted much attention in

the last two decades. Many algorithms have been proposed.

One of the commonly used methods is the Iterative Closest

Point(ICP) algorithm[1], which iteratively assigns correspon-

dence based on the Euclidean Distance and finds the least

squares based transformation related to these point sets. Be-

cause ICP assigns the definite point-to-point correspondence

in each iteration, it is easy to get stuck in local minima. So

ICP is usually applied to rigid registration.

Several algorithms have been introduced to treat the non-

rigid registration problem. The Robust Point Matching(RPM)

improves the performance in contrast to the ICP by adopt-

ing soft assignment and deterministic annealing techniques.

∗This work was conducted when the author studied as a visiting student

at University of Wisconsin-Milwaukee.

However, the RPM is not really based on the probability. Al-

though it uses the similar Expectation Maximization(EM), it

does not strictly compute the posterior probability in the ”E”

step.

Recently some algorithms based on the probability, espe-

cially the Gaussian Mixture Model(GMM), were proposed.

Coherence Point Drift(CPD)[3] defines a velocity function

for the template point set, namely the centroid of the GMM,

and iteratively calculates the unknown parameter in the GMM

by EM. An Expectation Conditional Maximization(ECM) for

point registration algorithm called ECMPR is proposed in [4],

which adopts the anisotropic covariance model and ECM to

resolve the rigid and articulated point registration. The reg-

istration based on GMM has good performance. But if the

data contain a large amount of noise, the results would be sig-

nificant degraded. In order to enhance robustness, an extra

uniform component can be included in the mixture model, as

in [9]. The CPD and ECMPR also adopt this kind of method.

So it would be better if we can estimate the probability that a

point belongs to the uniform component. At the same time, in

[3][4] one point set is taken as the observed data and the other

is taken as the centroid of GMM. We notice that the uniform

component just fit outliers in the observed data. The points

in the other point set represent the Gaussian components with

the same weight. When outliers exist in both point sets, some

wrong Gaussian components will be used to fit the observed

data, which will make the algorithm easing get stuck in local

minima.

In order to make the registration model more robust, spe-

cially to outliers, we present a new approach to tackling the

non-rigid registration between two point sets, with the follow-

ing original contributions: we weigh the noise component in

GMM by a robust estimation; the estimation of GMM den-

sity function is resolved by use of a bidirectional EM process

instead of fixing one point set and moving the other.

The paper is organized as follows. The non-rigid point set

registration method is proposed in Section 2. In Section 3,

the proposed method is applied to artificial point sets and ul-

trasound medical image and the experimental results are pre-

sented. Conclusions are drawn in Section 4.
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2. METHOD

2.1. Non-rigid point set registration based on GMM

Here we quickly review the non-rigid registration method

based on the GMM. More detailed can be found in [2][3][4].

Given two point sets X = {x1, x2, ..., xi, ..., xn} and Y =
{y1, y2, ..., yj , ..., ym}, where xi and yj are d dimension

vector, n and m are the number of the points. The goal of

registration is to find the mapping between X and Y . We

denote the mapping by f : �d → �d, yj = f(xi, θ), where θ
denotes the set of unknown transformation parameters.

In the framework of point set registration based on GMM,

we choose any one of the two data sets, such as X , as the ob-

served data and the other Y denotes the centroid of the GMM.

Assuming X is the i.i.d observed data, we have the probabil-

ity [11]

P (X) =

n∏

i=1

m∑

j=1

πjP (xi|θj) (1)

where the unknown parameter is the (πj , θj) and θj =
(Σj , μj), where μj is the centroid, Σj is the covariance of

GMM and πj is set as constants. Here we adopt the non-rigid

transformation in [3]: μj = f(yj) = Y + GW , where G is

the Gaussian Basis Function and W is the transformation pa-

rameter. With the regularization constraint, the log likelihood

function of (1) is

E(W ) = −
N∑

i=1

log
M∑

j=1

exp
− 1

2‖
xi−(Y +GWj))

Σj
‖2

+
λ

2
tr(WTGW )

(2)

The registration problem can be resolved by estimating the

unknown coefficients of the likelihood function. According to

the EM algorithm, in the ”E” step we can obtain the posterior

probability[11]:

Pj(xi; Ψ
k) = pj(xi; θ

k)/(
m∑

h=1

ph(xi; θ
(k)
h ) + U) (3)

where the U is a uniform distribution used to fit the noise

component in GMM, and the transformation coefficient W
can be obtained by taking the derivative of (2) in the ”M”

step. The isotropic covariance is computed as in [3].

2.2. Robust Estimation on the noise component

Actually there exists two classes of outliers in point set regis-

tration. The first one are noise point, which do not represent

any feature of data; the second are the data points in one point

set that can not match any points in the other set. For the

first one, in [3][4] a uniform distribution is used to suppress

its influence. In this subsection, we devise a robust estimator

based on the M-estimation[10] to weigh the noise component

in GMM. Here the average squared distance of the neighbor-

hood from xi can be seen as the squared residual error of the

estimator on xi. Hence the total squared error E is given by

ei =
1

|Ωi|
∑

xj∈Ωi

‖xi − xj‖2 (4)

Where Ωi denotes xi’s neighborhood point. The size of the

neighborhood window may not be a constant, but the number

of neighborhood points of the xi would be the same.

Then the weighting function is based on the average dis-

tance between the point and its neighborhood points and is

monotonically increasing. e′i = ei − e. where e is the mean

of all ei in observed point set. Using the Welsch function

ρ(ei) =
c2

2 [1− exp(−(ei/c)
2)]. We can get

wi(e
′
i) =

c2

2
[1− exp(−(e′i/c)

2)] (5)

The weight means that a point belongs to the noise com-

ponent if its point density among its vicinity deviate the point

density mean very much. And we normalize each weight as

wi = (w′
i −minw)/(maxw −minw) into the range [0, 1].

By weighting the noise component, we revise the poste-

rior probability function (3) in subsection. 2.1 as:

Pj(xi; Ψ
k) = pj(xi; θ

k)/(
m∑

h=1

ph(xi; θ
(k)
h ) + wiU) (6)

2.3. Bidirectional EM Process

For the second class outlier, we adopt a bidirectional EM pro-

cess which is easy to implement. Unlike the method in [2][3],

we do not fix the roles of two point sets. Firstly we arbitrarily

choose one point set as observed data and the other as the cen-

troid. For example, set X is chosen as the fixed set(observed

data) and set Y is chosen as the moving set(centroid). Then

we use the algorithm mentioned above to estimate the up-

dated value Y ′ of the moving set Y . Secondly we take the

Y ′ as fixed and X as the moving point set. Then the new

value X ′ of X is estimated. We iteratively update two point

sets until the parameter of the registration converge. Gener-

ally speaking, in the previous methods one point set is up-

dated to its new position based on the other point set. In our

approach two point sets interactively deform to their next po-

sitions. In each iterative procedure, there are two EM pro-

cesses. Because each point set is modeled as the observed

data, the weighted uniform component can fit the outliers in

both point sets, which works well on the second class out-

liers mentioned in subsection 2.2. In order to match one data

set with another, we will reset one of point set with initial

positions after convergence and restart the bidirectional EM

process. When the distance between two point sets reaches a

threshold measured by covariance, a unidirectional EM will

be performed to complete the registration. Table.1 shows the

flow chart of our algorithm.
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Variance <
threshold

Two point
sets X&Y

End

EM 1:set Y as centroids
E:Compute Py  from   Eq.6 
M:Compute Wy and update Y 

Convergence?

Convergence?

EM 2:set X as centroids
E:Compute Px  from Eq.6 
M:Compute Wx and update X 

N

Y

N

Y

Update X with initial
value

N

Y

Y

Convergence?

EM 1:set Y as centroids
E:Compute Py  from Eq.6 
M:Compute Wy and update Y 

N

Table. 1. Flow chart of our algorithm.

3. EXPERIMENTAL RESULT

This section shows the performance of our algorithm on artifi-

cial data and medical images in heavy noise. The algorithm is

implemented in Matlab, and tested on a Pentium4 CPU with

4GB RAM. The stopping criterion is: the change of regis-

tration parameter is above a threshold of 10−5; the number

of iteration is more than 200. On average the algorithm con-

verges in several seconds. The 2D point set and two medical

images used for comparison are taken from the CPD Matlab

package[3].

First, two incomplete fish models are used. The fish head

in the reference point set is removed and in the template point

set the fin is removed. For the first experiment(Fig. 1), we just

test the weighted noise component without the bidirectional

EM processing(see Eq.6). The result shows that weighted

heterogeneous outliers are excluded from the Gaussian com-

ponent. For the second experiment(Fig. 2), 5%, 15% and

25% random outliers are added. RPM and CPD work well

with a few outliers. Our method have good performance even

with heavy outliers. For the third experiment(Fig. 3), we

use 20 images with random outliers at different levels. RMP,

CPD and our method are used for registration. After that, we

remove these outliers and points that can not been matched.

Then we compute the average hausdorff distance between two

point sets. The smaller the distance, the better the results. Our

method shows higher robustness. At last we apply our algo-

rithm to point sets extracted from two medical images used in

[3]. However, We use the Canny’s algorithm to automatically

extract point sets instead of manual extraction as in [3].
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Figure. 1. Application of the weighted noise component to

2D fish point sets. (b) Registration without weighted noise

component. (c) Registration with weighted noise

component[Eq.6].
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Figure. 3. A comparison of TPS-RPM, CPD and our method

on the 2D fish point sets with respect to outliers(x-axis is the

ratio of the number of outliers to the number of clean data

points, y-axis is the average hausdorff distance of two point

sets after registration and removing the outliers). Our

algorithm shows more accurate registration performance

compared to TPS-RPM and CPD.
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Figure. 4. Application of our algorithm to image registration

of histopathology (a) and ultrasound elastography (b)

images[3]. (c) Two point set were extracted by the Canny’s

algorithm. (d)The aligned point sets using CPD. (e) The

aligned point sets using our method.
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Figure. 2: Registration results of RPM, CPD and our method with respect to different outlier ratios. The first column shows

template(◦) and reference(∗) point sets with 5%, 15% and 25% outliers. The col 2-4 show the registered positions of template

set superimposed over the reference set after applying TPS-RPM, CPD and our algorithms.

4. CONCLUSION

This paper introduces an improved probabilistic method for

non-rigid point set registration. The registration is consid-

ered as a parameter estimation question of Gaussian Mixture

Model with missing data. Unlike the previous method, we

do not fix the roles of point set: one is taken as the centroid

of GMM and the other is taken as the observed data, but

exchange the roles alternatively. That is more reasonable

for fitting the outliers in two point sets. Extensive experi-

ments were presented to show the robustness and accuracy.

Compared with the other two well-known algorithms, our

approach performs better under non-rigid deformation with

heavy outliers.
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