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ABSTRACT

Like many other imaging techniques, 3D fluorescence mi-

croscopy suffers from degradations that are basically varying

with the depth of the point source. This is due to the light

refraction phenomenon. In this article, we focus on modeling

and removing depth variant blur in such a system. In par-

ticular, we study some of the existing space-variant blur ap-

proximations and consider an efficient approximation where

the space variant blur function is a linear combination of a set

of space-invariant ones. We then focus on restoring space-

variant blurred images using such a model. For that, we fit

a domain decomposition-based minimization approach to the

deconvolution problem with a space variant blur model. We

thus obtain a fast restoration algorithm where the image esti-

mation is performed in a parallel way on different sub-images.

Index Terms— Blur modeling, energy minimization, flu-

orescence microscopy, restoration, space-variant PSF, total

variation.

1. INTRODUCTION

Even under the most suitable imaging conditions, optical im-

ages are affected by undesired blur mainly due to the inherent

limitations of the optical instruments such as the light diffrac-

tion phenomenon. In order to enhance the optical image qual-

ity, a post computational processing such as deconvolution

processing is needed. In this context, the blur is usually as-

sumed to be space invariant (SI) and the image degradation

modeling used is a convolution between the original image u
and the system induced blur function h conventionally called

Point Spread Function (PSF): g (x) =
∑
t∈O

[h (x − t) .u (t)]+

b (x) where b (.) is an additive noise and variables t and x
are respectively locations in the object space O and the image

space I, sub-sets of N
3. It is well known that the mathemat-

ical computations of such an operation can be rapidly carried

(*) Thanks to ANR DIAMOND project for funding and interesting dis-

cussions between its partners.

out using fast Fourier transform. Nevertheless, in 3D fluores-

cence microscopy, the blur is essentially varying with depth

due to the light refraction when crossing mediums of different

refractive indexes. In this case, the image degradation process

cannot anymore be modeled by a convolution. In fact, the

mathematical observation model is now expressed as follows:

g (x) =
∑
t∈O

[h (x, t) .u (t)] + b (x) (1)

Because of the space-variance of the PSF, computations are

very extensive in terms of CPU time and memory. In order to

avoid fastidious computations, one solution consists in con-

sidering a piecewise invariant PSF in such a way that the con-

volution model is locally preserved. However, this leads to

blur discontinuity artifacts in the resulting image and crudes

approximations of the space-variant (SV) blur. To remedy

this problem, we propose to use a convenient approximation

of the continuously varying blur. In this article, we compare

and assess the accuracy of two possible blur approximations

presented in [1, 2, 3], in the particular case of 3D fluoscence

microscopy. Afterwards, we invert this model by fitting a fast

minimization method proposed in [4] to the restoration prob-

lem with a SV PSF. The energy minimization is processed in a

parallel way on different areas of the image thanks to an over-

lapping domain decomposition strategy, leading to a fast algo-

rithm. Our contribution consists in fitting this method to the

case of SV PSF and showing that its convergence properties

are preserved in the case of SV PSF. This article is organized

as follows: the second section is devoted to study the approx-

imate SV blur modeling. In the third section, we present the

proposed restoration method. In the fourth section, we report

and evaluate some numerical results obtained on a simulated

3D fluorescence microscopy image. Finally, we conclude this

article by proposing some future work.

2. SPACE-VARIANT BLUR MODEL

In this section, we compare two main SV blur approxima-

tions i.e. the blur model proposed by Nagy et al in [1] and
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the one proposed by Hirsch et al. in [3]. Both approxima-

tions are compared to the accurate theoretical model [5, 6] in

the case of confocal laser scanning microscopy (CLSM) us-

ing some similarity criteria such as the structural similarity

index (SSIM) [7] and the relative standard error (RSE). We

then retain the most accurate one for the deblurring step.

2.1. Blur modeling proposed by Nagy et al., 1998

The blur model proposed in [1] is the following: g (x) =∑
1≤i≤D

ψi (x) . (hi ∗ u) (x) where ψi are nonnegative weight-

ing functions such that
∑

1≤i≤D

ψi (x) = 1. The observation

g is a SV linear combination of convolutions with SI PSF

hi, 1 ≤ i ≤ D. It is easy to show that the associated SV

PSF is written as follows:

h̃ (x, t) =
∑

1≤i≤D

ψi (x) .hi (x − t) (2)

Consequently, the proposed model is an interpolation in the

image space of a given set of SI PSF.

2.2. Blur modeling proposed by Hirsch et al., 2010

A more recent SV blur model was proposed in [3] where:

g (x) =
∑

1≤i≤D

hi ∗ (ψi.u) (x) with ψi (.) , 1 ≤ i ≤ D,

weighting functions as those considered in the previous sub-

section. We can show that the corresponding SV PSF is ex-

pressed as follows:

h̃ (x, t) =
∑

1≤i≤D

ψi (t) .hi (x − t) (3)

Note that the model proposed in [2] for 3D fluorescence mi-

croscopy is a particular case of this modeling for particular

weighting functions. Models (2) and (3) are used in (1) and

differs in the argument of functions ψi.

2.3. Blur model assessment and selection

It is obvious that the two presented blur models are equivalent

if we consider a piecewise-invariant PSF i.e. if the weighting

function ψi (x) is the indicator function for the ith region (it

equals 1 if x is in that region and 0 otherwise). However, in

the general case, equations (2) and (3) leads to different blur

functions. Although approximation (3) seems to be more nat-

ural as it allows to interpolate a given PSF set in the object

space, it is difficult to say if one approximation is better than

the other only based on these mathematical equations. That’s

why, we propose to solve this problem numerically by com-

paring these blur approximations for a given CLSM system.

Let consider for instance a 3D image of size 200× 200× 190
voxels composed of three micro-spheres. Axial slice (X, Z)

of this image is displayed in Fig. 2 (a), Z being the depth vari-

able along which the PSF is varying. We then generate a sim-

ulated image which is supposed to be distorted by a CLSM

system (cf. Fig. 2 (b)). The 3D PSF is varying along the

Z-direction (w.r.t depth) and is given by the theoretical PSF

model of Stokseth [5]. We thus use this image as a reference.

In order to generate approximate blur models as in (2) and

(3), we should possess a set of PSF {hi, 1 ≤ i ≤ D} as well

as convenient weighting functions {ψi, 1 ≤ i ≤ D}. For the

PSF set generation, we use a method similar to that proposed

in [8]. That is to say, PSF at different depths are computed

using Stokseth model. Among these PSF functions, the set

{hi, 1 ≤ i ≤ D} is selected such that no more than 15% of

variation between two consecutive PSF (hi and hi+1) is tol-

erated. For the considered setting, we retain 10 PSF starting

with the PSF at 0 μm to about 28.5 μm of depth. Weighting

functions are chosen in order to interpolate two consecutive

PSF. That is to say, we consider triangular functions displayed

in Fig. 1 as those previously considered in [2, 8]. The peak

of the weighting function ψi corresponds to the z-position of

the selected PSF hi. The blurred image according to models

Fig. 1. Weighting function variation with depth.

(2) and (3) are respectively presented in Fig. 2 (c) and (d). To

assess the proposed models, we depict in Fig. 2 (e) and (f) the

absolute value of the error between each of the proposed ap-

proximate blurred images and the reference observation given

by Fig. 2 (b). Moreover, we summarize in table 1 some other

similarity measures such as the relative standard error (RSE)

as well as the SSIM mean between each of the proposed mod-

els and the reference image. One can notice that for model

(2), the RSE is very high, it is about 12.18% while it does not

exceed 0.14% for model (3). This confirms the intuition that

the model (3) is more accurate than that given by (2). Other

comparative arguments are given in [9].

Nagy et al. Hirsch et al.

RSE (%) 12.18 0.14

SSIM mean 0.93 0.99

Table 1. Comparing SV blur models to the theoretical one.

3. IMAGE RESTORATION

Now, we are interested in inverting the second SV blur

model proposed in [3] by minimizing an energy function

formed by a quadratic term corresponding to data fidelity
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(a) (c) (e)

(b) (d) (f)

Fig. 2. (X, Z) slices of (a) the original 3D image, (b) the

observation according to the theoretical model, (c) the blurred

image using (2), (d) the blurred image using (3), (e) and (f)

present the absolute value of the error between simulations

respectively given by (2) and (3) and the reference image.

and a total variation regularization term that allows the

smoothness of homogeneous areas while preserving edges:

J (u) =
∥∥∥H̃ (u) − g

∥∥∥2

2
+ 2α ‖∇u‖1 where α > 0 is a fixed

regularization parameter and H̃ (u) =
∑

1≤i≤D

Hi (ψi.u) with

Hi (.) = hi ∗ (.). In order to minimize such a function,

we use an efficient and fast optimization method that was

recently developed in [4] for linear filtering. In fact, the idea

of this method consists in minimizing the function J (.) in

a parallel way on sub-domains of Ω in order to reduce the

computational time. The image domain Ω is thus split into

overlapping sub-domains, say for sake of clarity, a decompo-

sition into two sub-domains Ω1 and Ω2 such that Ω = Ω1∪Ω2

and Ω1 ∩Ω2 �= ∅. Note that the number of sub-domains con-

sidered in the minimization method is not necessarily the

same as that chosen for the PSF modeling. The solution u of

the minimization problem is also split into partial solutions:

u(x) =

⎧⎪⎨
⎪⎩

u1 (x) if x ∈ Ω1 � Ω2

u1 (x) + u2 (x) if x ∈ Ω1 ∩ Ω2

u2 (x) if x ∈ Ω2 � Ω1

where the func-

tion ui is in the subspace Vi, a set of functions whose support

is in Ωi. With this splitting, Fornasier et al. propose to per-

form the minimization of J (.) in each sub-domain separately

taking into account the estimate in the other sub-domain. The

local minimization in each sub-domain is performed using

Lagrange multiplier scheme. Details of the algorithm in the

case of a SV PSF are given in [10]. This algorithm requires

the knowledge of the adjoint of H̃ . We can easily prove that

it is expressed as follows: H̃∗ (.) =
∑

1≤i≤D

ψi.H
∗
i (.) with

H∗
i the adjoint of Hi. Note that H̃∗ (.) corresponds to the

SV operator of model (2) and consequently, models (2) and

(3) are adjoint to each other. Now, we check the conver-

gence of the proposed minimization algorithm for the two

non-stationary filters H̃ and H̃∗. The SI PSF used in each

of these non-stationary filters are positive and normalized

(i.e. hi (x) ≥ 0, ∀x ∈ Ω and
∑

x∈Ω

hi (x) = 1). From the

convergence proof established in [4], we exhibit two nec-

essary conditions. First, the energy function J (.) remains

coercive for the considered SV operators. Indeed, when con-

sidering model (2), we can easily prove that this sufficient

condition: function f = 1 /∈ Ker
(
H̃∗

)
, with Ker

(
H̃∗

)
={

u ∈ H : H̃∗ (u) = 0
}

is satisfied [10]. It follows imme-

diately from the fact that the SI PSF are normalized and the

sum of weighting functions ψi is 1. For the second model (3),

this property is also verified since H̃ (1) =
∑

1≤i≤D

Hi (ψi) is

different from zero as ψi, i = 1, ..., D, are positive func-

tions. A second necessary condition for the convergence

of the proposed minimization method is
∥∥∥H̃

∥∥∥
2

< 1 with

‖ H̃ ‖2= sup
{
‖ H̃ (u) ‖2 such that ‖ u ‖2≤ 1

}
. Since∥∥∥H̃

∥∥∥
2

=
∥∥∥H̃∗

∥∥∥
2
, it suffices to prove that this property is

verified for H̃∗. It is obvious that the property ‖H‖2 < 1
is true for any normalized and stationary convolution oper-

ator H as long as it is normalized. Indeed, we can prove

that ‖H‖2 ≤ 1√
n

with n = Card (Ω), using the proper-

ties of circulant matrix in the normalized Fourier transform

domain (see [10] for details). Now, let prove this property

(
∥∥∥H̃∗

∥∥∥
2

< 1) for the SV operator H̃∗. It is easy to show that

any linear operator, even if it is SV, verifies: ‖ H̃∗ (u) ‖2≤√
n ‖ H̃∗ (u) ‖∞. Using the following triangle inequality:

‖ H̃∗ (u) ‖∞≤ sup
x∈Ω

D∑
i=1

|ψi (x)| . |H∗
i (u) (x)| and using the

fact that ∀x ∈ Ω, 0 ≤ ψi (x) ≤ 1,
D∑

i=1

ψi (x) = 1, and

|H∗
i (u) (x)| ≤ 1√

n
, we can show that ‖ H̃∗ (u) ‖∞≤ 1√

n
.

Thereby, we proved that
∥∥∥H̃∗

∥∥∥
2

=
∥∥∥H̃

∥∥∥
2

≤ 1. Up to a

rescaling, the strict inequality can be obtained. By verifying

these two conditions, the convergence proof follows analo-

gous arguments as that presented in [4].

4. NUMERICAL RESULTS

We performed a first test of the proposed approach on the pre-

viously presented bead image of a CLSM system (see Fig. 2

(b)). To restore this image, we considered 10 PSF and weight-

ing functions as those presented in Fig. 4 (a). (X, Z) slice

of the restored image (cf. Fig. 3) as well as intensity pro-

files (cf. Fig. 4) along the optical axis passing through bead
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centers of the original object, the blurred one, the restored

object with the proposed approach, and the restored object

with the space-invariance assumption illustrate the relevance

of the proposed method. In fact, the considered depth-variant

blur model jointly takes into account the blur and the shift

applied on the object. That’s why, using the proposed ap-

proach, we succeed to remove the blur and retrieve the origi-

nal bead positions (cf. Fig. 3 (d)). However, using a SI PSF

computed at a zero depth in which the shift component is not

taken into account, we only remove the blur. The algorithm

converges after about 5 min for the considered image of size

200×200×190 voxels and for a decomposition into two equi-

sized sub-domains. Note that using the optimization method

of Fornasier et al for a SI PSF, we gain about 30% of the com-

putational time spent by a standard optimization method such

as ADM [11]. Test are done on a machine having a multi-core

processor (8 cores) of a frequency 1.86 GHz and the method

was programmed in Matlab.

(a) (b)

Fig. 3. (X, Z) slices of the restored images (a) using a SV PSF

and (b) using a SI PSF generated at a zero depth.

Fig. 4. Intensity profiles along Z-axis of the original object

(black-bold), the observation (gray), the restorations using the

SV PSF (black-fine) and using a SI PSF (discontinuous).

5. CONCLUSION

In this article, we presented a study of two main SV blur

models [1, 3]. Based on some numerical results, we showed

that the method proposed in [3] is a more accurate approxi-

mation of the SV blur in confocal microscopy. We then fit-

ted the restoration method proposed in [4] to that model and

showed its convergence properties. Test on simulated CLSM

data showed promising results. We are currently applying this

method on real data using experimental PSF. To conclude, fur-

ther investigation concerns blind restoration in the context of

the SV PSF model which is still an open issue.
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