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ABSTRACT
Melanoma detection relies on visual inspection of skin sam-

ples under the microscope via a qualitative set of indicators,

causing large discordance among pathologists. New de-

velopments in pump-probe imaging enable the extraction

of melanin intensity levels from skin samples and provide

baseline qualitative figures for melanoma detection and clas-

sification. However, such basic figures do not capture the

diverse types of cellular structure that distinguish different

stages of melanoma. In this paper, we propose an initial ap-

proach for feature extraction for classification purposes via

Hidden Markov Tree models trained on skin sample melanin

intensity images. Our experimental results show that the pro-

posed features provide a mathematical microscope that is able

to better discriminate cellular structure, enabling successful

classification of skin samples that are mislabeled when the

baseline melanin intensity qualitative figures are used.

Index Terms— Image processing, wavelet transform,

hidden Markov tree, melanoma detection and classification.

1. INTRODUCTION

Melanomas are among the most commonly occurring cancers,

but they are clinically challenging to diagnose. For exam-

ple, from 1990 to 2006, while overall cancer death rates de-

creased by 21% in men and 12% in women, the death rate for

melanoma in the United States increased more than 7% [1].

Early detection remains difficult but is critical for successful

treatment; five year survival rates fall from 98% for local can-

cers to 16% for metastatic melanoma [2].

The current standard for diagnosis remains biopsy and

histopathology, but this too results in discordant conclusions

because there is no one histological criterion for melanoma

— diagnosis must instead be made by subjectively weighing

a series of separate indicators that may be present in atypical

lesions as well. A recent study found a discordance rate of

14% among pathologists for melanoma diagnosis [3]. Doc-

tors must therefore err on the side of caution, which leads
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to an excess of false positive diagnoses and increased med-

ical costs and emotional trauma from unnecessary surgeries,

lymph node biopsies, and other treatments.

Melanoma presents a promising target for optical diagno-

sis both because suspicious lesions are accessible and disease

occurs within a few hundred micrometers of the skin surface.

Since melanin carries information about the metabolism and

location of melanocytes (melanin producing cells) in tissue,

the distribution of eumelanin and pheomelanin, the two dom-

inant types of melanin, could act as a marker for disease.

It was recently demonstrated that two-color pump-probe

imaging of skin samples can separate eumelanin and pheome-

lanin, two chromophores that are key to separate melanomas

from benign nevi in a highly sensitive manner [4]. Initial

approaches to melanoma detection and classification based

on pump-probe imaging rely on pixel-averaged eumelanin-to-

pheomelanin concentration ratios, achieving remarkable per-

formance levels [5]. However, such pixel-wise features can-

not capture the morphological features that distinguish differ-

ent stages of melanoma, which are evident by inspection of

the obtained images (see Fig. 1).

In this paper, we leverage prior work on modeling of nat-

ural images to perform feature extraction from pump-probe

skin sample images for the purpose of melanoma classifica-

tion. We focus on statistical models of image wavelet coeffi-

cients that capture the scale, predominance, and intensity of

the spatial features present in the image. We show empiri-

cally that the use of these statistical morphological features

for classification leverages the distinct cellular features of the

different stages of melanoma to improve the performance of

melanoma classification over pixel-averaged methods. In a

sense, wavelet analysis provides a mathematical microscope
that tabulates features relevant to melanoma detection and

classification.
2. BACKGROUND

Melanoma classification: We briefly describe several classes

of melanoma according to the histological and chemical fea-

tures evident in the skin samples, as illustrated in Figure 1.

Benign nevi exhibit a proliferation of small melanocytes

arranged as single cells and/or nests usually distributed along

the basal layer, the deepest layer in the epidermis. These sam-

ples usually contain no melanocytes in the superficial layers

of the epidermis, indicating no pagetoid (outward) spread.
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Fig. 1. Example pump-probe images for different classes of skin samples. Orange denotes eumelanin, green denotes pheomelanin, and blue

denotes surgical ink. From left: benign nevus, compound nevus, dysplastic nevus, melanoma in-situ, and invasive melanoma.

Compound nevi exhibit small matured melanocytes that in-

volve the epidermis as well as the dermis. The intra-epidermal

component of these lesions is organized as single cells and

nests without confluent growth pattern or presence of upper

migration of melanocytes. Dysplastic nevi feature junctional

nests of melanocytes that appear as a clustering of pigmented

cells at the basal layer. Pigmented keratinocytes are often

seen in the upper epidermis, but there is no pagetoid spread.

Melanoma in-situ samples correspond to very early forms of

melanoma, where the melanocytes have proliferated only ra-

dially within the base of the epidermis. In contrast, invasive
melanoma features both radial and vertical proliferation of

melanocytes. Such samples also tend to have large structure

across the image, including pigmentation in the dermis.

In terms of chemical features, a large quantity of pheome-

lanin is often found in melanocytic benign and compound

nevi, with a shift to eumelanin dominance in melanoma.

Because eumelanin is photoprotective and has antioxidant

properties, whereas pheomelanin can act as a photosensitizer,

it has been postulated that elevated amounts of pheomelanin

would lead to increased damage from ultraviolet radiation

and an increased risk of malignant transformation. Dysplas-

tic nevi display atypical growth and seem to have increased

pheomelanin content compared to normal skin and other

melanocytic nevi [6]. However, the chemical identity of

melanin in melanomas is less clear, and some evidence exists

to show that eumelanin may in fact occur in increased con-

centration [7]. This indicates a more heterogeneous chemical

signature being characteristic of melanomas in contrast to

other types of lesions. The generalizations we make are

drawn from only one new study (our STM paper) and in lim-

ited sample set, and that the literature does not paint a clear

or definitive picture either.

Bulk analysis of the eumelanin content alone allows for

the rejection of many false positive diagnoses. We calculate a

weighted average of eumelanin content across the entire im-

age by normalizing by total melanin content in a pixel-wase

fashion. Regions containing surgical ink were not consid-

ered. As shown in Fig. 2, if only raw melanin content is con-

sidered, a threshold of 38% eumelanin captured all invasive

melanomas and most of the melanomas in situ while exclud-

ing > 75% of the dysplastic nevi. Although the eumelanin to

pheomelanin ratio is not sufficient to diagnose melanoma, it

may greatly improve diagnostic accuracy in conjunction with

Fig. 2. Distribution of normalized average eumelanin content of

skin samples grouped by class. Overlaid on the box and whisker

plot are the actual data points for the different samples. The dashed

line shows the 38% average eumelanin threshold used to separate

melanomas from nevi.

complementary diagnostic techniques.

Hidden Markov trees: A widely used sparse representation

in signal and image processing is the wavelet transform. The

wavelet transform of an image provides a multiscale time-

frequency analysis of the image content, effectively encod-

ing the locations and scales of the image features in a com-

pact fashion. This energy compaction property is the main

reason behind the popularity of wavelet transforms for im-

age processing and compression, including the state-of-the-

art JPEG2000 standard.

In a typical 2D real-valued wavelet transform of an
√
N×√

N -pixel image x ∈ R
N , each wavelet coefficient wo,s,i,j is

labeled by a scale s ∈ {1, . . . , S := log2(N)/2}, orientation

o ∈ {H,V,D} for horizontal, vertical, and diagonal, respec-

tively, and offset (i, j), 1 ≤ i, j ≤ 2s−1. Additionally, a

scaling coefficient w0 captures the remaining energy of the

signal. The image x can then be written as

x = w0ϕ+
∑

o∈{H,V,D}

S∑

s=1

2s−1∑

i,j=1

wo,s,i,jψo,s,i,j ,

where ϕ denotes the scaling function and ψo,s,i,j denotes

the mother wavelet function ψo for orientation o dilated to

scale s and translated to offset (i, j). For convenience, we

also index the wavelet coefficients and wavelet functions as

{w0, w1, . . . , wN−1} and {ϕ, ψ1, . . . , ψN−1} using an arbi-

trary ordering, e.g., lexicographic.
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A coefficient wo,s,i,j at scale s describes a portion of the

signal of size O(4−s). With 4s−1 such coefficients at each

scale and orientation, a quad-tree provides a natural orga-

nization for the coefficients. Each coefficient at scale s <
log2(N)/2 has 4 children at scale s+ 1, and each coefficient

at scale s > 1 has one parent at scale s− 1.

A large wavelet coefficient (in magnitude) generally indi-

cates the presence of a singularity inside its support; a small

wavelet coefficient generally indicates a smooth region. This

energy compaction property causes wavelet coefficients to

have a peaky non-Gaussian distribution. Thanks to the nest-

ing of child wavelets inside their parents, edges in general

manifest themselves in the wavelet domain as chains of large

coefficients propagating across scales in the wavelet quad

tree; we call this phenomenon the persistence property.

Hidden Markov Trees (HMTs) [8] offer one modeling

framework that succinctly and accurately captures this joint

structure in natural images. In an HMT, wavelet coefficients

are modeled probabilistically using a mixture of Gaussians:

one component features a large variance that models large

nonzero coefficients and receives a small weight (to en-

courage few such coefficients), while a second component

features a small variance that models small and zero-valued

coefficients and receives a large weight. We distinguish these

two components by associating to each wavelet coefficient

wn an unobserved hidden state Sn ∈ {S, L}; the value of

Sn determines which of the two components of the mixture

model is used to generate wn:

f(wn|Sn = S) = N (0, σ2
S,n), f(wn|Sn = L) = N (0, σ2

L,n),

with σ2
L,n > σ2

S,n. To generate the mixture, we apply a prob-

ability distribution to the available states: p(Sn = S) = pSn
and p(Sn = L) = pLn, with pSn + pLn = 1.

To simplify the model, the coefficient-dependent parame-

ters are made equal for all coefficients within a scale; that is,

the new model has parameters Θ = {pLs, pSs , σL,s, σS,s}1<s≤S .

We can obtain estimates of all these parameters for a set of

coefficients w using maximum likelihood estimation via an

expectation-maximization (EM) algorithm [8].

3. FEATURE EXTRACTION

We design a feature set for a skin sample based on the pa-

rameters of an HMT trained over its pump-probe image. The

goal of feature selection is to capture the scale and orienta-

tion of the dominant features in an image, given that different

types of melanoma exhibit different scales and orientations

for their cellular structure. This is in contrast to the features

in [5], which do not consider orientation and scale, but rather

global average melanin concentration. Therefore, we select

as features the likelihoods of the small state pSs for each ori-

entation {H,V,D} and scale s = 1, . . . , S. If strong features

are present in an image at a given scale and orientation, the

corresponding wavelet coefficients will be large, yielding a

small probability of the small state for that scale and orienta-

Fig. 3. Pictorial representation of feature vectors extracted from

skin samples. Each column corresponds to a different sample from

the labeled classes and each row corresponds to the likelihood of a

small state for a given scale. Red (dark) color denotes largest likeli-

hood, while blue (light) colors denote smallest likelihood.

tion during HMT training. We perform this feature extraction

on three different types of processed pump-probe images.

F1: We train an HMT on a sample image depicting only

total melanin concentration, i.e., we sum the eumelanin and

pheomelanin concentration values for each individual pixel.

While this modality gives smaller feature vectors, it does not

discriminate between the presence of both types of melanin, a

key distinguishing feature between classes as shown in Fig. 1.

F2: We train two HMTs individually on the eumelanin

and pheomelanin concentration images. However, F2 fails to

discriminate between chemically homogeneous and heteroge-

neous regions, since each feature relies only on the concentra-

tion of a single type of melanin.

F3: We create new images that express the percentage

concentration of each type of melanin and train HMTs on

each of them. In other words, the pixel of the processed im-

ages contain the ratio between the intensity of the eumelanin

and pheomelanin concentrations, respectively, and their sum.

F3 expresses information about chemical homogeneity.

Figure 3 shows the extracted feature vectors from the

eumelanin and pheomelanin intensity images for the second

type of extracted features. Each 512 × 512-pixel skin sam-

ple image is reduced to a feature vector containing the small

state likelihoods for the two channels (one for the first type

of features), three orientations, and S = 9 different scales.

This results in a feature vector of dimension F = 54 (or 27,

respectively). The figure shows a few qualitative differences.

For nevi, small coefficients are more likely at all size scales.

Melanomas are more likely to have large coefficients. How-

ever, these differences are subtle and variable, and we need

sophisticated classifiers to make more rigorous statements.

4. MELANOMA CLASSIFICATION PERFORMANCE

Once the images of lesions have been reduced to an appro-

priate mathematical representation, they need to be classified.

Support vector machines (SVMs) have been used to tackle

diverse classification and regression problems and are one of

the most effective tools for these tasks. To develop a clas-
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Test PC PD 1− PFA

Melanoma vs. nevi 73% 72% 74%

Melanoma vs. nevi + SKs 61% 62% 60%

Invasive melanoma vs. nevi 57% 54% 57%

In situ melanoma vs. nevi 72% 73% 72%

Melanoma vs. benign 59% 60% 58%

Melanoma vs. dysplastic 56% 52% 60%

Table 1. Skin sample classification results for F2 features, scales

4–9, σ = 0.2. The table shows the probability of correct classifi-

cation PC , sensitivity (probability of detection) PD , and specificity

(complement of false alarm probability) 1 − PFA for each of the

classification problems listed.

sifier for the feature vectors of wavelet transformed images

of pigmented lesions, we used a Neyman-Pearson SVM, also

known as a 2ν-SVM [9].1 This algorithm allows assignments

of different weights ν1 and ν2 to false positives and false neg-

atives during training, respectively. The script searches for

best performing parameters ν1 and ν2, as well as the best

bandwidth parameter σ of the Gaussian radial basis kernel

function via line search. The parameter selection was per-

formed using leave one out cross validation.

We tested several classification problems as listed in Ta-

ble 1. Melanoma includes both invasive and in situ unless

otherwise noted. Nevi includes benign, compound, and dys-

plastic nevi unless otherwise noted. For each binary classifi-

cation problem, we tested all three feature types F1–F3. We

used the 2ν-SVM classifier with radial basis function parame-

ter values σ varying between 0.1 and 0.5. We also did feature

subset selection by dropping the features corresponding to the

coarsest scales, varying from s = 1 to s = 4.

Classification rates for the various problems varied from

40% to 75%, depending on the test performed and feature

used. Invasive melanoma vs. nevi goes up to 65% classifi-

cation, 68% sensitivity and 64% specificity when F2 features

are considered instead of F1. The improvement also appears

for the melanoma (both) vs. dysplastic problem, which has

68% success, 75% sensitivity and 60% specificity.

The success of wavelet scales 4–9 was comparable or even

superior to that of the full feature vector for all trials. This

improvement indicates that coarse features such as the dis-

tribution of melanin in the epidermis vs. the dermis are not

contributing to correct classification. Instead, this analysis

appears to be highlighting differences on the cellular scale.

The wavelet scale s = 4 corresponds to features ∼ 20μm in

size and smaller, which is 1–2 cells. Differences on this scale

were not noticed by our previous visual inspection of these

images, and the wavelet transform method is most likely pro-

vided a complementary analysis and not picking up on the

same features discussed in Section 2.

This complementary information should therefore pro-

duce a different set of errors and correct false positives and

negatives than bulk eumelanin classification. Indeed, we find

this to be the case. We found many different classifiers which

1We thank Mark Davenport for sharing the 2ν-SVM classifier code.

correct 100% of false negatives and 80–100% of false pos-

itives from bulk eumelanin classification. These classifiers

operated on the invasive melanoma vs. nevi and melanoma

in situ vs. nevi problems. Only the F3 features (and not F2

features) yielded classifiers which corrected 8+ of the false

positives. For invasive melanoma vs. all nevi, the σ = 0.2
classification of scales 4–9 had 65% correct classification

rate, 68% sensitivity and 64% while correctly calling 9 out

of 10 false positives from average eumelanin classification

(none of the false negatives from average eumelanin classifi-

cation were invasive melanomas). For melanoma in situ vs.

all the nevi, many different classifiers corrected all of the false

negatives. The σ = 0.1 classification of scales 4–9 corrected

all of the false negatives and 10 out of 10 false positives with

59% sensitivity and 56% specificity. Other conditions for

these two groups gave higher sensitivity (up to 68%) and

specificity (up to 64%) while correcting the false results.

The classifiers had greater success in many trials when

only one category of melanoma was considered, which in-

dicates differences between the way these two types of

melanoma present. In this case we expect more subtle

changes to appear between the two classifications of melanoma,

especially on the cellular level. For example, Fig. 1 shows the

lack of dermal pigmentation in the melanoma in situ. These

subtle changes may additionally include enlarged nucleus,

local heterogeneity of pigmentation or other features not yet

discovered to which the wavelet transform is sensitive.
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