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ABSTRACT

Automated image segmentation techniques are useful tools in

biological image analysis and are an essential step in tracking

applications. Typically, snakes or active contours are used

for segmentation and they evolve under the influence of cer-

tain internal and external forces. Recently, a new class of

shape-specific active contours have been introduced, which

are known as Snakuscules and Ovuscules. These contours are

based on a pair of concentric circles and ellipses as the shape

templates, and the optimization is carried out by maximizing

a contrast function between the outer and inner templates. In

this paper, we present a unified approach to the formulation

and optimization of Snakuscules and Ovuscules by consider-

ing a specific form of affine transformations acting on a pair

of concentric circles. We show how the parameters of the

affine transformation may be optimized for, to generate either

Snakuscules or Ovuscules. Our approach allows for a unified

formulation and relies only on generic regularization terms

and not shape-specific regularization functions. We show how

the calculations of the partial derivatives may be made effi-

cient thanks to the Green’s theorem. Results on synthesized

as well as real data are presented.

Index Terms— Active contours, Snakes, Affine transfor-

mation, Snakuscule, Ovuscule.

1. INTRODUCTION

Active contours or snakes are efficient tools for image seg-

mentation [1] and tracking [2]. Snakes evolve from a speci-

fied initialization towards the boundary of a desired object so

as to minimize some suitably defined energy function. There

are a large class of snake varieties depending on the type

of curve representation: (i) point snakes, where the snake

is represented as a collection of pixels [3], (ii) parametric

snakes, where the curve is described in terms of chosen basis

functions such as B-splines [4] or Fourier exponentials, and

(iii) geometric snakes, which are level sets of appropriately

defined surfaces. Of these snake types, the parametric variety

offers computational advantages and allows for straightfor-

ward incorporation of smoothness and shape constraints.

Depending on the choice of the basis function, some specific

shapes may also be preferred. For example, using exponen-

tial splines with appropriately chosen parameters, one may

be able to reproduce ellipses [5].

Recently, in a couple of interesting publications, Thévenaz

et al. introduced a new snake formalism based on specific

shapes. Based on circles and ellipses as the contour defini-

tion, they proposed Snakuscules [6] and Ovuscules [7] as a

pair of concentric contours, which are specified by points that

lie on them. The points are then optimized for, to determine

the best-fit circle or ellipse. The optimization cost function

is a locally defined contrast function (contrast between the

outer and inner contours). Thus, the snakuscule and ovuscule

models differ significantly from traditional snake approaches.

Snakuscules are parametrized by two points, and Ovuscules

are specified by three points. In either parametrization, there

is an extra degree of freedom, which gives rise to non-unique

solutions. In order to limit the degrees of freedom and arrive

at a unique solution, regularization terms are introduced in

addition to the snake energies. Upon convergence of the aug-

mented cost function, Snakuscules and Ovuscules lock on to

the nearest circular and elliptical objects, respectively.

In this paper, we show that both Snakuscules and Ovus-

cules can be obtained by considering a restricted affine trans-

formation of a mother snake, which we specify as a pair of

concentric circles centered at the origin. By choosing the

parameters of the affine transformation appropriately, either

Snakuscules or Ovuscules can be obtained. As a result, a

regularization function is not needed to enforce unicity of the

solution. The snake energy is a normalized contrast function,

which is a measure of the contrast between the inner and

outer curves of the affine-transformed mother template. This

is the same energy proposed by Thévenaz et al.

Organization of the paper: In Section 2, we provide the

mathematical formulation first for generating Ovuscules from

a mother snake. Section 3 contains the specification of the

snake energy and its partial derivatives with respect to the

affine transformation parameters. In Section 4, we show how

Snakuscules may be obtained by imposing a simple constraint

on the affine transformation parameters.
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2. OVUSCULES

The mother snake is shown in Figure 1. It comprises two

concentric circles centered at the origin. Both inner and outer

circles are continuously parameterized as (x0(t), y0(t)) =(
cos t√

2
,
sin t√

2

)
and (x1(t), y1(t)) = (cos t, sin t), t ∈ (0, 2π].

The factor
√
2 ensures that the area of the inner circle is as

much as the area of the annulus between the two circles. The

reason is discussed in Section 3.1. The affine-transformed

versions of the mother snake are given as(
Xi

Yi

)
=

(
A cos θ B sin θ
−A sin θ B cos θ

)(
xi

yi

)
+

(
xc

yc

)
,

(1)

for i = 0, 1. The parameters xc and yc determine the center of

the transformed snake; A and B are the semi-major and semi-

minor axes of the ellipse; θ is the angle of rotation. Note that

the entries in the affine transformation matrix are constrained

such that the transformed snakes are Ovuscules. This particu-

lar version of the transformation is referred to as the restricted

affine transform. The total number of degrees of freedom is

five (the free parameters being {A,B, θ, xc, yc}). The trans-

formation is illustrated in Figure 1. From these parameters,

one can derive other useful parameters of the ellipse such as

the eccentricity and foci. Among all the Ovuscules in the fam-

ily, we would like to obtain the one that best fits an object of

interest. This is achieved by optimizing with respect to the

free parameters and is discussed in the subsequent section.

3. SNAKE OPTIMIZATION

3.1. Snake energy

The snake energy is specified as the normalized contrast func-

tion:

E =
1

AB

(∫ ∫
τ1\τ0

f dx dy −
∫ ∫

τ0

f dx dy

)

=
1

AB

(∫ ∫
τ1

f dx dy − 2

∫ ∫
τ0

f dx dy

)
, (2)

where τ0 and τ1 are the circular regions enclosed by the con-

tours (X0(t), Y0(t)) and (X1(t), Y1(t)), respectively. The

contrast is computed between the inner and outer curves.

Maximizing the contrast enables the Ovuscules to lock on

to bright objects in a dark neighborhood. The
√
2 factor in

the definition of the mother snake ensures that in regions of

constant intensity, the energy E is zero. Therefore, the Ovus-

cules remain stationary in such regions. The normalization

term AB ensures that the area occupied by the inner contour

is minimum. This also removes the ambiguity suffered by

Ovuscules. Without the normalization, Ovuscules do capture

bright objects, but may not always provide the expected out-

line. This aspect is illustrated in Figure 2, where all three
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Fig. 1. Illustration of generating Ovuscules from the mother snake.

(a) (b) (c)

Fig. 2. (Inverted grayscale) Illustration of the need for the normal-

ization term AB in equation (2). Best-fit Ovuscules (a) with normal-

ization; (b) and (c): without normalization.

Ovuscules have the same contrast if there were no normaliza-

tion. However, with the normalization factor, the Ovuscule in

Figure 2(a) gives the best fit.

3.2. Partial derivatives

In order to perform optimization using gradient descent tech-

niques, we require the partial derivatives of the cost function

E with respect to the parameters {A,B, xc, yc, θ}. The final

expressions are given below (the derivations are given in the

Appendix). The derivatives of the energy with respect to A
and B are given by

∂E

∂A
=

1

A

(∫ 2π

t=0

(f(X1, Y1)− f(X0, Y0)) cos
2 t dt − E

)
, and

∂E

∂B
=

1

B

(∫ 2π

t=0

(f(X1, Y1)− f(X0, Y0)) sin
2 t dt − E

)
.
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The partial derivative of E with respect to the orientation pa-

rameter θ is given by

∂E

∂θ
=

1

AB

(∫ 2π

t=0

(f(X1, Y1)− f(X0, Y0))×

(B2 −A2) sin t cos t dt

)
,

and those with respect to the coordinates of the center of the

ovuscule are given by

∂E

∂xc
=

1

AB

(∫ 2π

t=0

(
√
2f(X1, Y1)− 2f(X0, Y0)) cos t dt

)
,

∂E

∂yc
=

1

AB

(∫ 2π

t=0

(
√
2f(X1, Y1)− 2f(X0, Y0)) sin t dt

)
.

(3)

If f is a constant, then the partial derivatives are equal to

zero, which means that the Ovuscules do not move in such

regions. The optimization is carried out using a gradient-

descent technique. To make the initialization interactive, we

allow the user to specify two points, which are taken as the

end-points of the mother snake.

The results of optimizing Ovuscules on Drosophila im-

ages and Shepp-Logan phantom [8] are shown in Figure 3.

The Drosophila image is taken from the Image Archive of

the Genetics Society of America (http://www.drosophila-

images.org/2007.shtml). The image is the 2007 winner of

the Drosophila Image Award [9]. Color images are con-

verted to gray scale before optimization. The final results are

displayed on the original color image. We observe that the

Ovuscules evolve and lock on to the boundaries of interest

quite effectively.

4. SNAKUSCULES

To optimize for Snakuscules instead of Ovuscules, we need

to enforce the constraint: A = B = r (r is the radius of the

circle) in the restricted affine transformation of the mother

snake. Corresponding to A = B = r, we have that
∂E

∂θ
=

0, that is, the snake is not optimized for rotation — this is

reasonable because the circle is isotropic and does not exhibit

any directional preference. The partial derivative with respect

to the parameter r in this case is given by

∂E

∂r
=
1

r

(∫ 2π

t=0

f(X1, Y1) dt−
∫ 2π

t=0

f(X0, Y0) dt− 2E

)
.

The derivation for the above equation is given in Ap-

pendix A.2. The partial derivatives
∂E

∂xc
and

∂E

∂yc
are the

same as in (3) with A = B = r. We see that circle fit-

ting requires optimization of three parameters only, which

is one less than the number considered in [6]. The con-

strained affine transform becomes a similarity transform for

Initial configuration Final configuration

Fig. 3. Performance of Ovuscules on Drosophila Images and

Shepp-Logan phantom [8]; to segment darker objects in bright back-

ground, the gray scale of the image is inverted.

Snakuscules. To illustrate the performance of the Snakus-

cules obtained using the proposed formulation, we show

segmentation results on the optic disc in a retinal image. The

data is taken from the online repository of the STARE project

(http://www.parl.clemson.edu/stare/images2.htm). The re-

sults of the Snakuscule optimization are presented in Fig-

ure 4. We observe that the Snakuscule provides satisfactory

segmentation of the optic disc.

5. CONCLUSIONS

We proposed a unified formulation of recently proposed

Snakuscules and Ovuscules. The advantage of the new for-

mulation is that explicit additional regularization terms are

not required to ensure unique solutions. The cost function

to generate Ovuscules can be modified slightly to result in

Snakuscules. Thanks to the Green’s theorem, the compu-

tation of the partial derivatives is made efficient. We pre-

sented examples on real data to demonstrate the efficiency

of Snakuscule and Ovuscule fitting. The advantage of the

proposed formalism is that other types of shape templates can

also be accommodated within the same framework.
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Image-1 Image-2

Fig. 4. Performance of Snakuscules on retinal images. The region

of interest is the optical disc (the bright spot corresponding to the op-

tic nerve head); the first row shows the initializations and the second

row shows the converged result.

A. APPENDIX

A.1. Partial derivatives for Ovuscules

Since both integrals in (2) have the same form, it suffices to

analyze one of them. Let E0 =
∫ ∫

τ0
f dx dy, andE1 =∫ ∫

τ1
f dx dy. For ease of calculation, we transform the co-

ordinate axes from (x, y) to (X,Y ), such that(
X
Y

)
=

(
A cos θ B sin θ
−A sin θ B cos θ

)(
x
y

)
+

(
xc

yc

)
.

The image gets mapped from f(x, y) to F (X,Y ). As a result,

E0 =

∫ ∫
�0

F (X,Y ) dx dy, andE1 =

∫ ∫
�1

F (X,Y ) dx dy,

where �1 =
[
− 1√

2
, 1√

2

]
×
[
− 1√

2
, 1√

2

]
and �0 =

[
− 1

2 ,
1
2

]
×[

− 1
2 ,

1
2

]
.

For brevity of notation, we have dropped the parameter t
to represent (X(t), Y (t)), (x(t), y(t)) as (X,Y ), (x, y), re-

spectively. We next invoke the Green’s theorem to convert the

surface integrals to line integrals, which are relatively easy to

compute and to perform differentiation. Specifically,

E0 = −
∮
�0

FY dx =

∮
�0

FX dy, (4)

where FY (X,Y ) =
∫ Y

−∞ F (X, ζ) dζ and FX(X,Y ) =∫X

−∞ F (ζ, Y ) dζ. E0 is a function of (X,Y ), which are in

turn functions of the parameters of the snake. Hence, the

partial derivative of E0 with respect to A is given by

∂E0

∂A
=

∂E0

∂X

∂X

∂A
+

∂E0

∂Y

∂Y

∂A
. (5)

Applying the Green’s theorem in (5), we get that

∂E0

∂A
=

∮
�0

∂FX

∂X

∂X

∂A
dy −

∮
�0

∂FY

∂Y

∂Y

∂A
dx

=

∮
t∈(0,2π]

F (X,Y )x cos θ{−A sin θ dx+B cos θ dy}

+

∮
t∈(0,2π]

F (X,Y )x sin θ{A cos θ dx+B sin θ dy},

∂E0

∂A
=

B

2

∫ 2π

t=0

f(X0, Y0) cos
2(t) dt.

Similarly, one can derive partial derivatives of E0 and E1 with

respect to the other parameters.

A.2. Partial derivatives for Snakuscules

∂E0

∂r
=

∮
�0

∂FX

∂X

∂X

∂r
dy −

∮
�0

∂FY

∂Y

∂Y

∂r
dx

=

∮
t∈(0,2π]

F (X,Y )x r dy +

∮
t∈(0,2π]

F (X,Y )y r dx,

=
r

2

∫ 2π

t=0

f(X0, Y0) dt.
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