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ABSTRACT 
 
The application of compressed sensing (CS) to MRI has the 
potential for significant scan time reductions. The signal 
obtained in the phase-scrambling Fourier transform (PSFT) 
imaging technique shows better performances compared to 
standard Fourier transform base imaging when it is applied 
to CS. Sparsity of signal is an essential condition for 
compressed sensing. In this work, we adopt a FREBAS 
transform as a sparsifying transform function instead of 
wavelet transform to improve the quality of images in PSFT 
based CS. It was shown that the directionality of FREBAS 
transform and the usage of successive thresholding in 
FREBAS domain offers fairly good images, particularly at 
low sampling rates. In addition, proposed method is robust 
to the choice of sampling trajectory of NMR signal. 
 
Index Terms— L1-norm, FREBAS, MRI, sparse  
 

1. INTRODUCTION 
 
Recently, a new theory called compressed sensing (CS) has 
been applied to MR image reconstruction with great success 
[1]. The CS theory states that a signal with a sparse 
representation can be reconstructed from much fewer 
measurements than previously suggested by the 
conventional Nyquist sampling theory [2]. S. Ito and Y. 
Wiaux have shown independently that the use of quadratic 
phase modulation prior to data acquisition can greatly 
improve the accelerating factor of CS [3,4]. Quadratic phase 
modulation on the object function can be realized by 
introducing the phase-scrambling Fourier imaging technique 
(PSFT) which was proposed by Maudslay and Wedeen 
independently [5,6]. Sparse representation is the key of the 
CS theory, and reconstructed images greatly depend on the 
sparsifying transform function. Most of the prior work in 
CS MRI used the discrete cosine transforms or wavelet 
transform for sparsifying transform function. 
 In this paper, we propose to adopt the FREBAS transform 

[7] as a sparsifying transform function in the PSFT-CS. 
FREBAS transform consist of two different Fresnel 
transform algorithms, which offers multi-resolution image 
decomposition with highly directional representation. 
Unlike the wavelet transform, the calculation of FREBAS is 
rather simple with three FFTs and three quadratic phase 
modulations, which makes it easy to implement it in the CS 

procedure. In addition, FREBAS has a distinctive feature 
that an optional scaling parameter can be taken in the image 
decomposition. Therefore, the successive thresholding of 
FREBAS domain with different scaling parameter is 
expected to encourage incoherency between measurement 
matrix and sparsifying transform function. In experimental 
simulations, we find that proposed CS reconstruction based 
FREBAS transform outperforms equivalent reconstruction 
using common wavelet transform. 
 

2. METHOD 
 
2.1. Phase-Scrambling Fourier Imaging Technique 
Phase-Scrambling Fourier Transform (PSFT) imaging is a 
technique whereby a quadratic field gradient B=b(x2+y2) is 
added to the pulse sequence of conventional FT imaging in 
synchronization with the field gradient for phase encoding 
[3,4]. The signal obtained in PSFT is given by Eq. (1), 

dxdy
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where (x,y) represents the spin density distribution in the 
subject,  is the gyromagnetic ratio, and b and  are the 
coefficient and impressing time, respectively, of the 
quadratic field gradient.  Like the standard Fourier Imaging 
technique, spin density distribution (x,y) can be obtained 
by taking the inverse Fourier transform of the signal and 
multiplying the quadratic phase term exp[j b x2+y2 . 
The maximum value of b  can be determined as b max= 

/(N x2) by the sampling theorem, x { b x2 x}|x =N x/2  

= .  The parameter b can expressed by Eq.(2) using the 
coefficient h and normalized parameter b max, 

b  = h b max  .                                   (2) 
The PSFT signal spread over in k-space in accordance with 
the parameter h. 
 
2.2. Signal restoration using compressed sensing 
According to the CS theory, a signal s with a sparse 
representation in the basis , can be recovered from the 
compressed measurements p= s, where is an x  
measurement matrix (M<<N), if the  and  are incoherent. 

sp -1 ,      NM
0

                (3) 

 The image is reconstructed from the undersampled k-space 
data by solving the nonlinear optimization problem: 
minimize || s||1 subject to || s - p||2 < , where  is a small  

677978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



   
(a)                         (b)                        (c) 

Fig.1 Examples of FREBAS transform (a) original image, (b), (c) 
scaling parameter D=3 and 5, respectively. 

 
constant. 

Minimizing || s||1, we use technique based on projection 
[8]. Algorithm of this class form by s successively 
projecting and thresholding; 
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where,  is orthonormal such that is scaling 
factor, is a threshold set appropriately at each iteration, 

 is sparsifying transform function.  
In our work, we adopt FREBAS transform [7] as a 

sparsifying transform function which is described in 2.3. 
The starting condition of Eq.(4) we used zero-filled 
reconstructed image for s Equation (4) is a specific 
instance of a projected Landweber (PL) algorithm [9]. PL-
based CS reconstruction provides reduced computational 
complexity. Figure 2 shows the schematic of proposed CS 
method using the FFT instead of calculating  or . 
 

2.3. FREBAS TRANSFORM  
The FREBAS transform consists of two different 

algorithms for the Fresnel transform, which is a diffraction 
equation for use with sound or light waves [7]. When down-
scaling is performed, the alias signal that is produced when 
computing the Fresnel transform signal is separated in the 
reconstructed image domain, and equivalent band splitting 
of the Fresnel transformed signal is performed in the image 
domain. This band splitting of the Fresnel transformed 
signal domain can be interpreted as the image data being 
analyzed by convoluting imaged data with sinc functions 
having different modulation indices. 
Considering the one-dimensional signal for reasons of 

simplicity, a decomposed image m(x) in the FREBSAS 
domain can be described equivalently as a convolution 
integral with the kernel of a band-pass filter function: 

      )2(sinc)()(
2
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where (x) is an image data, X(=N x) is the field of view of 
the input image, N is the size of image, x is the pixel width, 
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Fig.2 Schematic of compressed sensing using FREBAS 

transform. D is FREBAS transform using scaling parameter 
D. 

 
c is a coefficient directly related to the scaling parameter of 
the FREBAS transform, namely, D= /(cN x2),and m ( |m|
D ) is an index of the frequency band in  filter-banks. Figure 
1 shows the examples of the FREBAS decomposed images 
for the cases of D = 3 and 5.  

The FREBAS transform is similar to the wavelet 
transform in that it decomposes input images in the image 
domain; however, the FREBAS transform differs from the 
standard wavelet transform in the sense that 1) the FREBAS 
transform with scaling parameter D decomposes the input 
image into D2 smaller images having the same scale size 
1/D, 2) the calculation consists of three FFTs and three 
quadratic phase modulations, 3) scaling parameter D can 
take on not only integer values but also real values, 4) 
complex-value decomposition which ease to transform 
images with phase variations, and 5) redundant transform. 
FREBAS domain signal has a real and imaginary part in 
general, therefore, the size of FREBAS transform signal 
would be double of input image sizes, if input image is a 
real-value data. Since the size of FREBAS signal is 
increased, FREBAS is a redundant transform. The basis 
function of FREBAS transform is considered as 
sinc(2cXx)exp{j2cmXx} by Eq.(7). Since the inner product 
of sinc(2cXx)exp{j2cmXx} having different m number 
would be zero, which means that the FREBAS is a 
orthogonal transform. The calculation steps of FREBAS 
transform are as follows; 

1) Fourier transform (FT), 
2) quadratic phase modulation exp{j(D /N)(ix

 2+ iy
2)} 

3) inverse Fourier transform (IFT), 
4)  quadratic phase modulation exp{j( /(DN))(ix

2+ iy
2)} 

5) Fourier transform (FT) 
6) quadratic phase modulation exp{j(D /N)(ix

 2+ iy
2)},  

where ix,  iy  are the index of signal data. 
Discrete wavelet transform in the standard dyadic 

decomposition form is widely used for image compression; 
however, it is known to be somewhat deficient in several 
aspects, specifically, it lacks shift invariance and significant 
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directional selectivity. On the other hand, FREBAS has 
many directional representations; therefore, a much higher  
degree of directional features can be tracked.  
 

3. SIMULATION EXPERIMENTS 
 
In the simulation experiments, PSFT signal is calculated 
numerically according to the Eq.(1) using the MR volunteer 
image data. MR image data were collected on Toshiba 1.5T 
MRI scanner with 3D gradient echo sequence. The 
normalized parameter b max is 1.23 rad/cm for the 
conditions of x= y=0.1 cm and N=256x256. We introduce 
the successive 2-step thresholding in the FREBAS domain 
(PSFT-CS-FREBAS 2-step) using the different scaling 
parameter D to improve the incoherency between 
measurement matrix and sparsifying transform function 
(FREBAS). The best combination of scaling parameters D 
is 6 and 9, which is determined by preliminary simulations. 
We used Cartesian sampling because it is by far the most 
widely used in practice. Fully sampled PSFT signal data 
was calculated and then randomly picked for the phase 
encoding direction to be a given reduction factor. Since the 
energy of PSFT signal spreads widely over the k-space 
dependent on the parameter b (or h), and do not 
concentrated strongly on the center of k-space, it is not 
necessary to concentrate the sampling trajectory on the 
central region of the k-space.  
  As a comparison, iterative thresholding method based on 
wavelet is examined. (PSFT-CS-Wavelet). Wavelet used in 
the simulation experiments is 4-level dyadic decomposition 
with daubechies 4. Representative results using PSFT-CS-
FREBAS (proposed method) and PSFT-CS-Wavelet for 
20% and 25% of full data with h=0.6 are shown in Fig. 3. 
Figure 4 shows the images for different trajectory using the 
same amount of signal 25% for the condition of h=0.4.  

Several important features should be noted from Fig. 3 
and Fig.4. When the amount of data is small such as 20%, 
the reconstructed images by PSFT-CS-Wavelet show stripe-
shape artifacts perpendicular to phase encoding direction. 
Figure 4 indicates that quality of image obtained by PSFT-
CS-Wavelet depends on the trajectory of signal strongly 
even though the amount of signal is the same. It was 
revealed from Fig.4 (b),(c) that CS reconstruction by PSFT-
CS-Wavelet tends to fail when the dense of signal is not 
sufficient in k-space. Therefore, the reconstruction would 
fail in the case when the amount of signal is rather small. 

On the other hand, FREBAS based CS technique shows 
very small dependencies on the trajectory of signal and 
offers fairly good images for all the case shown in this 
article. We confirmed that proposed PSFT-CS-FREBAS 2-
step succeeded in CS reconstruction using 12% of full 
signal, even though some blurring effects appear on the 
image.  

The consideration of point spread function in helpful to 
understand the behavior of CS algorithm and measure the  
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Fig. 3 Comparison of CS images between FREBAS and wavelet. 

(a) fully scanned image data (gold standard). (b) PSFT signal 
(h=0.6) (c) and (d) show the signal trajectory for acquiring 
20% and 25% of signal, respectively. (e), (f) are images 
obtained by FREBAS 2-step and (g), (h) are by wavelet for 
20%, 25% of data. When the amount of data is small, the 
wavelet-base CS shows artifact on the image. 

 
incoherence. Let e be a point image (having 1 at a pixel and 
zeros elsewhere). Then PSF can be obtained by applying e 
instead of )0(-1  in Eq.(4). Figure 5 shows the results of  
PSF examination with h=0.6. Fig.5(a) shows the PSF after 
random sampling in k-space. In this case, it looks likes 
random noise added on the point image e.  Figs. (b), (c) 
shows the PSF after PSFT-CS-FREBAS single-step (D=6) 
and proposed PSFT-CS-FREBAS 2-step (D=6 and 9), 
respectively. Figure 5(d) is the PSF after PSFT-CS-Wavelet. 
It was shown that random noises are much more reduced in 
proposed method compared to PSFT-CS-Wavelet. These 
results indicate that mutual incoherence between basis of 
FREBAS transform and measurement matrix (Fourier 
operator) is smaller than that of between wavelet basis and 
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Fourier operator. This feature contributes to reconstruct 
superior images in proposed CS reconstruction. The relative 
reconstruction error calculated by averaging 10 kind of 
images, defined as || cs||2/|| ||2 is shown in Fig.6. RMS of 
reconstruction error is plotted with respect to the reduction 
factor of signal. As described earlier, the proposed method 
shows the better performances for the data smaller than 25%. 
These results suggest that the proposed CS method is robust 
to the k-space trajectory and the resultant quality of images 
outperforms the wavelet-based method. The proposed 
algorithm inherits the fast execution speed of the projection-
based CS reconstruction. The execution time for 100 time 
iterations is 12.1sec using 3.06-GHz Intel Corei7 950 
processor. 

5. CONCLUSION 
 
In this paper, we examined the application of FREBAS 
transform as a kind of directional transforms for the 
compressed sensing in the modified Fourier transform 
imaging. The directionality of FREBAS transform and the 
usage of successive application of thresholding encourage 
superior image quality. The proposed method is robust to 
sampling trajectory of signal and offers fairly good images, 
particularly at low sampling rates. The future work is the 
application to actual MRI signal with phase variations. 
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Fig. 4 Comparisons of CS images for the different signal 

trajectories on condition that the signal has the same 
amount of data, 25% of full signal (h=0.4); (a),(b),(c) 
different signal trajectory that cover 25% of k-space, (d)-(f) 
images by PSFT-CS-FREBAS corresponding (a) to (c), 
(g)-(i) images by PSFT-CS-Wavelet. 
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Fig. 5 Comparison of PSF, (a) PSF of undersampled signal, (b) 

after FREBAS- single-step (D=6), (c) after FREBAS 2-step 
(proposed; D=6 and  9), (d) CS-wavelet. 
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Fig. 6 Reconstruction error with respect to the reduction factor. 
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