
A TIME-VARYING GAUSSIAN MODEL FOR THE COMPLEX-VALUED EEG SPECTRUM
DURING MENTAL IMAGERY TASKS

Amirhossein S. Aghaei, Konstantinos N. Plataniotis, and Subbarayan Pasupathy

E-mail: {aghaei, kostas, pas} @ comm.utoronto.ca
Edward S. Rogers Sr. Department of Electrical and Computer Engineering,

University of Toronto, 10 King’s College Road, Toronto, Canada.

ABSTRACT

Recent findings in neuroscience have shown that the spectral
components of electroencephalogram (EEG) signals con-
vey information regarding the mental task not only in their
power but also in their phase. This calls for the utilization
of complex-valued spectrum, instead of the commonly used
power spectral density, in designing the brain computer in-
terfaces. This paper studies the complex-valued spectrum of
the EEG signal recorded during mental imagery tasks, and
provides a statistical model for the EEG spectral components.
Motivated by the results of a recent work by the authors,
this paper proposes a time-varying noncircularly-symmetric
Gaussian model for complex-valued EEG spectrum during a
mental imagery trial. It will be shown that the mean of this
Gaussian model is constant over time, whereas its variance
and pseudo-variance follow an autoregressive conditional
heteroscedastic (ARCH) model. The validity of this model is
then verified using statistical tests.

Index Terms— Brain computer interface, improper com-
plex Gaussian, complex-valued spectrum, autoregressive con-
ditional heteroscedasticity

1. INTRODUCTION

Electroencephalogram (EEG) signals recorded from brain’s
activity during mental imagery tasks are widely used for spon-
taneous brain-computer interface (BCI) systems. A sponta-
neous BCI aims to provide a channel for the brain to com-
municate with the outside world by means of imagining cer-
tain motor tasks, e.g. hand/foot movement. A great portion
of spontaneous BCIs utilize spectral components of the EEG
data as discriminative features for classification of imagery
tasks. Although complete representation of the EEG signal in
the frequency domain results in a complex-valued represen-
tation, most methods only consider the power spectral den-
sity and ignore the phase of EEG spectrum.1 However, recent

1Note that the phase of EEG spectrum is different from the phase coupling
of oscillatory activities from different parts of the brain, which is usually
measured by phase locking value.

studies have revealed that there exist relevant information car-
ried in the phase of electrical activities of the brain, both in
microscopic level (the phase of neural firings) and in macro-
scopic level (the phase of EEG) [1–5], which is ignored in the
power spectral density (psd) representation.

While there are numerous studies in the literature on
statistical characterization of EEG’s power spectrum during
mental imagery tasks, there exist no study on characterization
of the complex-valued spectrum. To the best of the authors’
knowledge, the only study is a recent work by the authors
in [6] which has examined the complex-valued spectral fea-
tures obtained from short-time Fourier transformation (STFT)
of the EEG data. It has been shown in [6] that these spectral
components can be modeled by a quasi-stationary Gaus-
sian distribution. This model is shown to be noncircularly-
symmetric or improper [7, 8], which confirms that there exist
relevant information in the phase of EEG spectrum. A brief
review of this model will be presented in Section 3.

The current paper utilizes the results of [6] to further
study the time-varying nature of the complex-valued EEG
spectral components. In particular, the time-varying proper-
ties of the mean and variance of the real and imaginary parts
of the spectrum will be examined in Section 4. It will be
shown that during a motor imagery trial the means of the real
and imaginary parts of each spectral component are highly
stationary, whereas their variances slowly change over time.
This motivates us to propose an autoregressive conditional
heteroscedastic (ARCH) model for the spectral components
in Section 5. An ARCH model assumes that the variance at
any time instance is a function of the samples at previous time
instances. The validity of this model will be verified using the
Engle’s test for residual heteroscedasticity. Finally, these re-
sults will be incorporated into the the quasi-stationary model
of [6] to provide a general time-varying complex-valued
Gaussian model for the EEG spectral components.

2. DATA STRUCTURE AND EXPERIMENT SETUP

This paper uses data set V of the BCI competition III [9],
which consists of EEG signals of three normal subjects (per-
sons) recorded during four non-feedback sessions. During
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Fig. 1. Complex-valued EEG spectral components obtained using short-time Fourier transformation of multichannel EEG data.

each session, the subject sequentially imagines three differ-
ent tasks: repetitive self-paced left hand movements (Task 1),
repetitive self-paced right hand movements (Task 2), and gen-
eration of words beginning with the same random letter (Task
3). Each task lasts 15 seconds and is continuously followed
by another randomly selected task requested by the operator.
The EEG signals are recorded at 512Hz sampling rate using
a Biosemi system with 32 electrodes located according to the
International 10-20 system. Our analysis is performed on 8
centro-parietal channels: C3, Cz, C4, CP1, CP2, P3, Pz, and
P4, which are recommended by the data set providers.

Consider a multichannel EEG signal recorded during a
trial as shown in Figure 1. An STFT is applied on each chan-
nel of the data to obtain the frequency domain representation
of the EEG at each time instant. The applied STFT uses
Tukey windows of length 1 second with overlapping factor
of 15/16 and α = 1/8. Then, the spectral components in the
range of 8− 30Hz with a resolution of 2Hz are retained. This
frequency band corresponds to the α rhythm (8− 12 Hz) and
β rhythm (12−30 Hz) of the brain which are known to be as-
sociated with mental imagery tasks. In this paper, z(f, c, t) =
x(f, c, t) + jy(f, c, t) denotes the f th spectral component of
channel c obtained during the time interval [t − 1, t], where
x(f, c, t) and y(f, c, t) are its real and imaginary parts2.

3. GAUSSIAN MODEL FOR COMPLEX-VALUED
EEG SPECTRAL COMPONENTS

Assume that a subject is performing a specific mental im-
agery task during the time interval t ∈ [t1, t2]. The EEG
spectral component z(f, c, t) is called stationary, if the prob-
ability density function (pdf) of z(f, c, t) only depends on the
variables f and c and is constant over time t ∈ [t1, t2]. Simi-
larly, the variable z(f, c, t) will be called quasistationary if its
pdf changes very slowly with time and can be modeled to be
constant if z(f, c, t) is observed over a short period of time,
i.e., t2 − t1 is small enough. In such a case, we consider the
z(f, c, t) components that are observed during this short pe-
riod of time to form a set of samples with the same pdf. For

2In this paper, scalars are shown in lowercase (e.g., a). Also, E{.} de-
notes expectation, and σ2

x and σxy respectively denote the variance of x and
covariance of x and y

simplicity we call this set of samples an ensemble. Figure 1
shows how a small set of samples can form an ensemble.

The work in [6] has shown that during a mental imagery
task, the spectral components z(f, c, t) can be modeled with
a quasistationary noncircularly-symmetric complex-valued
Gaussian distribution, whose first and second order statistics
can be defined with the following parameters:

μz(f, c, t) = E {z(f, c, t)} = μx(f, c, t) + jμy(f, c, t)

σ2

z(f, c, t) = E
{
|z(f, c, t)− μz(f, c, t)|

2

}

= σ2

x(f, c, t) + σ2

y(f, c, t)

γ2

z (f, c, t) = E
{
(z(f, c, t)− μz(f, c, t))

2

}

= (σ2

x(f, c, t)− σ2

y(f, c, t)) + j2σxy(f, c, t)

The parameters μz(f, c, t), σ2

z(f, c, t), and γ2

z (f, c, t) repre-
sent the time-varying mean, variance, and pseudo-variance
of z(f, c, t). It should be noted that second order charac-
terization of z(f, c, t) requires knowledge of both its vari-
ance and pseudo-variance, or alternatively knowledge of
σ2

x(f, c, t), σ2

y(f, c, t), and σxy(f, c, t). It is shown in [6]
that σ2

x(f, c, t) �= σ2

y(f, c, t); hence, z(f, c, t) is called
noncircularly-symmetric or improper3. The next section
examines the time-varying properties of these parameters.

4. TIME-VARYING CHARACTERISTICS OF THE
EEG SPECTRUM

The results of [6] indicate that μx(f, c, t), μy(f, c, t), σ2

x(f, c, t),
and σ2

y(f, c, t) parameters change very slowly during a trial
and can be considered to be constant over observation inter-
vals of length three seconds or less. In other words, for t ∈
[t1, t1 + 3] we have x(f, c, t) ∼ N

(
μx(f, c, t1), σ

2

x(f, c, t1)
)

and y(f, c, t) ∼ N
(
μy(f, c, t1), σ

2

y(f, c, t1)
)
. In this sec-

tion, we divide the STFT samples obtained during a trial
into overlapping intervals of length three seconds, and con-
sider the samples within each interval to form an ensem-
ble, as illustrated in Figure 1. Then, we perform the well

3For simplicity, in this paper we assume σxy(f, c, t) = 0 and only focus
on the effect of σ2

x
(f, c, t) and σ2

y
(f, c, t).
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Fig. 2. Percentage of ensembles verified to have a mean (a-b) or a variance (c-d) equal to the overall empirical mean or variance
calculated using all the samples in a trial. (For brevity only the results of Subject 1 are presented.)

known T-test and Chi-square variance test to determine if the
mean/variance of the samples within each ensemble is equal
to the overall trial mean/variance, denoted by μ(f, c) and
σ2(f, c), which is empirically calculated from all the samples
in the trial. Each of these tests is separately performed on the
real part and imaginary part of spectral components.

In order to study the ensemble means, we use the T-test
which examines the null hypothesis that the x(f, c, t) (or
y(f, c, t)) samples within an ensemble have a Gaussian dis-
tribution with mean μx(f, c) (or μy(f, c)) and unknown vari-
ance. This test is repeated over all the trials in the database,
for each specific frequency and each channel. A significance
level of 0.05 is used for all the statistical tests performed in
this paper. Figure 2.a shows the results of this test for the
real part of the spectrum (x(f, c, t)). In this figure, we have
reported the average percentage of ensembles for which the
null hypothesis of T-test is not rejected. In other words, the
percentage of ensembles which are verified to have the same
mean as the overall trial mean are presented in this figure.
Figure 2.b shows similar results for the imaginary part of the
spectrum (y(f, c, t)). Since all the subjects exhibited simi-
lar trends, only the results of Subject 1 are reported. These
results are averaged over all channels and tasks. These fig-
ures reveal that the mean of spectral components are highly
stationary over each mental imagery trial. Therefore, we
can assume that the μx(f, c, t) and μy(f, c, t) parameters are
constant over each trial and do not change with time index t.

In order to study the ensemble variances, we use the Chi-
square variance test which examines the null hypothesis that
the x(f, c, t) (or y(f, c, t)) samples within an ensemble have
a Gaussian distribution with σ2

x(f, c) (or σ2

y(f, c)). Figures
2.c and 2.d show the results of this test for the real and imag-
inary parts of the spectrum (x(f, c, t) and y(f, c, t)). Similar
to the Figures a-b, the percentage of ensembles which are ver-
ified to have the same variance as the overall trial variance are
presented in these figures. It can be seen that for more than
%30 of the ensembles the null hypothesis is rejected, which
shows that unlike the means, the variances are time-varying
and cannot be assumed to be constant over the entire trial.

The above results together with the results of [6] sug-

gest that during a mental imagery trial, the complex-valued
spectral components can be modeled with a time-varying
noncircularly-symmetric Gaussian model with a constant
mean and a time-varying variance and pseudo-variance. In
this model, the variations of the variance and the pseudo-
variance are slow enough such that a Gaussian distribution
with fixed parameters accurately models the spectral compo-
nents observed during a short interval (of length 3 seconds or
less). This motivates us to examine the possibility of using
an autoregressive conditional heteroscedastic (ARCH) model
for the time-varying variance of the spectral components.

5. ARCH MODEL FOR SPECTRAL COMPONENTS

The main challenge in dealing with the time-varyingGaussian
model proposed in the previous section is to model the varia-
tions of σ2

x(f, c, t) and σ2

y(f, c, t) parameters over time. This
section examines if an ARCH model [10] can be used for this
purpose. The ARCH model assumes that: (a) The variance
of the signal is not constant and changes over time; hence the
term heteroscedastic. (b) The variance at each time instance is
a linear function of the previous samples; hence the term con-
ditional autoregressive. Let εx(f, c, t) = x(f, c, t)−μx(f, c),
then the ARCH model of order q implies that

σ2

x(f, c, t) = α0(f, c) + Σq

i=1
αi(f, c)ε

2

x(f, c, t− iΔt)

where iΔt is the time lag between the current sample and
the ith previous sample (As it was explained in Section 2,
Δt = 1/16 second). A similar model can also be used for
σ2

y(f, c, t) in terms of εy(f, c, t) = y(f, c, t) − μy(f, c). In
order to test the validity of this model we have performed the
following steps for x(f, c, t) and y(f, c, t) over a trial.

1. Start with q = 1;

2. Assuming that an ARCH(q) model describes the variations of
the variance of the spectral components over time, estimate
the parameters {α0, ..., αq} and find the log-likelihood ob-
jective function value (LLFq) associated with the parameter
estimates;

3. Assuming that an ARCH(q+1) model describes the variations
of the variance of the spectral components over time, estimate
the parameters {α0, ..., αq+1} and find the value of LLFq+1;
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4. Perform the likelihood ratio test to determine if there is
enough statistical evidence to increase the ARCH order from
q to q + 1.

5. If the likelihood ratio test confirms the order increase, then
increase the ARCH order from q to q + 1 and go to step
2. Otherwise, the ARCH(q) model suffices for modeling the
variations of the signals’ variance.

Let qx(f, c) and qy(f, c) denote the resulting order for
x(f, c, t) and y(f, c, t). The validity of each of these model
orders has been further confirmed using the Engle’s test for
residual heteroscedasticity [10] with a significance level of
0.05. Our analysis shows that (a) the value of qx(f, c) is equal
to qy(f, c) in most of the cases (with only a few exceptions
which will be mentioned later). Therefore, we will simply
show the model order by q(f, c). (b) The value of q(f, c) does
not change over different trials and tasks (with a few excep-
tions). Table 6 presents the results of q(f, c) for subject 1 (The
other two subjects show similar trends). The values marked
by an asterisk are the ones for which the value of q(f, c) was
changing between 1 and 2 for the real/imaginary parts and/or
for different tasks or trials.

The results of this table show that for all the frequency
components the variations of σ2

x(f, c, t) and σ2

y(f, c, t), and
hence the variations of σ2

z(f, c, t) and γ2

z(f, c, t), can be
easily modeled using an ARCH model of order one or two.
Therefore, we can conclude that the complex-valued spec-
tral components z(f, c, t) of the EEG signal recorded during
a mental imagery trial can be modeled by a noncircularly-
symmetric Gaussian distribution with constant mean and
time-varying variance and pseudo-variance that follow an
ARCH(1) or ARCH(2) model (depending on the values of f
and c).

6. CONCLUSIONS AND REMARKS

This paper provided a time-varying Gaussian model for the
complex-valued spectral components of the EEG signal,
which are obtained using STFT during mental imagery tasks.
It was shown that although the mean of each spectral compo-
nent can be considered to be constant over a trial, its variance
and pseudo-variance are time-varying. We examined the pos-
sibility of using an autoregressive conditional heteroscedastic
(ARCH) model for analyzing the time-variations of the vari-
ance and pseudo-variance, and showed that an ARCH model
of order 1 or 2 completely characterizes these time-variations.

The results of this paper can be used in modeling the
non-stationarity of the spectral components of the EEG data
recorded for brain computer interfacing (BCI) systems, which
in turn can be utilized in the design of adaptive feature extrac-
tors and classifiers. Moreover, the proposed model paves the
way for further analysis of the information conveyed in the
complex-valued spectrum. Although recent findings in neu-
roscience have strongly suggested that the phase information
conveyed in the complex-valued spectrum is relevant to the

Channels
Freq C3 Cz C4 CP1 CP2 P3 Pz P4
8 Hz 2∗ 1 2∗ 1 1 2∗ 2∗ 2∗

10 Hz 1 1 1 1 1 1 2∗ 1
12 Hz 2 2 2∗ 2 2 2∗ 2∗ 2
14 Hz 1 1 1 1 1 1 1 1
16 Hz 1 1 2∗ 1 1 1 1 1
18 Hz 1 1 1 1 1 1 1 1
20 Hz 2 2 2 2 2 2 2 2
22 Hz 1 1 1 1 1 1 1 1
24 Hz 1 1 1 1 1 1 1 1
26 Hz 1 1 1 1 1 1 1 1
28 Hz 2 2 2 2 2 2 2 2
30 Hz 1 1 1 1 1 1 1 1

Table 1. ARCH model order for different spectral compo-
nents of each channel.

brain’s mental activities, there exists no statistical framework
for analysis of this complex-valued spectrum. The results of
this paper can be used in the future as a framework for further
statistical analysis of the complex-valued EEG spectrum.
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