PERIODICITY DETECTION FOR BCI BASED
ON PERIODIC CODE MODULATION VISUAL EVOKED POTENTIALS

Masaki Nakanishi, Yasue Mitsukura

Keio University
Graduate School of Science and Technology
3-14-1, Kohoku, Hiyoshi, Yokohama, Kanagawa, Japan
nakanishi@z3 keio.jp, mitsukura@sd.keio.ac.jp

ABSTRACT

In this paper, we studied the brain computer interface (BCI) based on
periodic code modulation visual evoked potential (VEP). The code
modulation VEP (c-VEP) is one of electroencephalogram (EEG)-
based BCI methods, and can acheive high speed communication. In
this method, by identifying a pseudorandom binary code (PRBC)
that modulates visual stimulus from measured EEG, we can transfer
the command related with the PRBC into external devices. However,
the communication speed becomes slow inversely with increased
number of commands. In order to solve this problem, we proposed
extended c-VEP method using periodic pseudorandom binary codes.
In this method, we identify the periodicity from the EEG by us-
ing autocorrelation, and the command related with periodicity of the
EEG is transferred. As a result of computer simulation, we were able
to detect the periodicity of the EEG. Therefore, we verified the fea-
sibility of the periodic pseudorandom binary codes for VEP-based
BCL

Index Terms— Electroencephalography, Brain-computer inter-
faces, Visual evoked potentials, Autocorrelation

1. INTRODUCTION

Brain-computer interface (BCI) realizes a direct communication be-
tween the human brain and the external environment by translating
human intentions into control signals [1]. A BCI allows an individ-
ual with severe motor disabilities or aphasia to have effective control
over devices such as computers, wheelchairs and music instruments.
A BCI system detects the presence of specific patterns in a brain
activity and translates these patterns into meaningful control com-
mands. Recently, electroencephalogram (EEG)-based BCI is attract-
ing much attention due to their noninvasiveness and high communi-
cation speed. The information transfer rate (ITR) is commonly used
to evaluate the communication speed of a BCIL. Current EEG-based
BClIs fall into four main categories such as sensorimotor activities,
P300, visual evoked potentials (VEP), and common spatial pattern
(CSP) [1]. In particular, a VEP-based BCI has received increasing
attention due to their advantages of little user training, ease of use,
and a high ITR [1-3].

VEPs are generated in response to visual stimuli such as flashing
lights and these potentials are prominent in the occipital area. Two
kinds of stimulus modulation method are generally used in VEP-
based BCIL. The method that a visual stimulus is presented repet-
itively at a rate of 5-6 Hz or greater is termed steady-state visual
evoked potentials (SSVEP). In this method, a continuous oscilla-
tory electrical response is elicited in the visual pathways. Current
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SSVEP-based BCIs have ITRs of 7-90 bits/min. On the other hands,
G. Bin et al proposed a new prototype system based on code mod-
ulation VEPs (c-VEP) [7, 8]. Pseudorandom binary codes (PRBC)
are used to modulate visual stimuli. The c-VEP BCI achieved ITR
of 108 4 12.0 bits/min and increased number of targets (32 targets).
However, the c-VEP has the trade-off between communication speed
and the number of targets. Therefore, the communication speed be-
comes slow inversely with the number of targets.

In our study, we propose the periodic code modulation VEP. In
this method, periodic pseudorandom binary codes are used to modu-
late targets. These targets generate a periodic sequence of VEP with
the same periodicity as that of the modulated targets. We can iden-
tify a target which a user is fixated by using periodicity detection
method. Furthermore, we can increase the number of targets with-
out delaying the communication speed by combining the periodicity
detection method and c-VEP. In this paper, we provide a detailed
description of how to build the BCI based on periodic code modula-
tion VEP and the computer simulation that verifies the feasibility of
proposed method.

2. CONVENTIONAL VEP-BASED BCI

The c-VEP proposed by G. Bin et al. achieved high ITR [8]. In a
c-VEP BCI, pseudorandom binary codes are used. The m-sequence
is the most widely used to generate pseudorandom sequences. Vi-
sual stimuli are presented on a CRT monitor. A stimulus alternated
between two states: ’light’ and ’dark’, so a pseudorandom binary
code can be used as a modulation sequence. ’Light’ and ’dark’ are
represented as "1’ and *0’ in the binary codes respectively. For in-
stance, when the refresh rate of the monitor is 60 Hz, the stimulus
modulated by a binary sequence *100100100..." represents a 20Hz
flickering. Each target is modulated by a binary code that has two-
frame time lag between consecutive targets. Each binary code is
mutually in the circular-shift relation, and nearly orthogonal to other
binary codes.

In order to identify the target, the EEG templates for targets
termed *TO0’,T1’,...,) TN’ are preliminary prepared. The template
for TO can be obtained by averaging the EEG data from multiple
stimulus cycles. Once the template for TO was obtained, templates
for other targets can be easily obtained by shifting the template for
TO circularly. After obtaining templates for all targets, a template
matching method is used for target identification.

In this method, there is the trade-off between communication
speed and number of targets. The length of psudorandom binary
codes becomes long according to the number of targets. Therefore,
the communication speed becomes slow.
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Fig. 1. An illustration of modulation codes for the proposed method.
Each modulation codes are generaged from non-periodic modula-
tion code.(a)Non-periodic modulation code. (b) Two-cycle periodic
modulation code. (c) Three-cycle periodic modulation code. (d) M-
cycle periodic modulation code.

3. PERIODIC CODE MODULATION VEP

In this study, we propose the VEP-based BCI using the periodic
pseudorandom binary codes. A periodicity in the EEG is caused
by using the targets modulated by periodic codes in addition to the
non-periodic codes used in the c-VEP BCI. Therefore, target identi-
fication is realized by detecting the periodicity in the EEG. In addi-
tion, we can identify a lot of target by using circular-shifted periodic
codes. We employ the autocorrelation to detect the periodicity in the
EEG. In this section, the generating periodic codes process and the
target identification method are described.

3.1. Periodic pseudorandom binary code

The steps of generating the periodic pseudorandom binary codes
process are as follows:

1. A N bits non-periodic pseudorandom binary code are gener-
ated by using m-sequence.

2. The m-cycle periodic code is generated from a non-periodic
code by the following steps.

(a) The first N/m bits are detected from a non-periodic
code.

(b) The detected N/m bits code is aligned repeatedly until
a periodic code becomes the [V bits.

3. The two-bits circular-shifted codes are obtained from A non-
periodic code and m-cycle periodic codes. The number of
circular-shifted code that has m-cycle might be N/2m.

In Fig. 1, the periodic code are illustrated.

3.2. Target identification

We show the flow of the target identification. A VEP template for
a target modulated by a non-periodic code can be obtained by av-
eraging the EEG data from multiple stimulus cycle. The length of
the template equals the length of a stimulus cycle of non-periodic
code. The templates for other targets can be obtained by shifting
along with c-VEP. The steps of preparing the templates are shown in
the following four steps.

1. Inthe training stage, the user is required to fixate on the refer-
ence target modulated by non-periodic code. EEG data within
K stimulus cycles are collected as si(t),k = 1,2, ..., K.

2. A reference template Mpg(t) is obtained by averaging over K
stimulus cycle.

Ma(t) = 22 > s(t) (1)
k—1

3. The templates of all targets modulated by non-periodic code
are obtained by shifting the reference template.

M;(t) = Mgr(t — (11 — 7TRr)) ()

where 7, — T indicates the time lag between target [ and
reference target.

4. The templates of other targets modulated by periodic codes
M, l(m) are obtained by extracting the length of a stimulus cy-
cle of each periodic code m.

By using these steps, we can obtain all templates from only one ref-
erence template.

The target identification is composed of two steps such as peri-
odicity detection and template matching.

1. Periodicity detection
(a) The EEG data are collected into a buffer as x(t) that
length equals a stimulus cycle of non-periodic code.

(b) The EEG data in a buffer are divided into m,m =
2,3,..., M section. Each section is numbered as
1,2,...h,...m.

(c) The autocorrelation coefficient 7, is calculated as the
following equation.

1N (2n(t) 241 (1)) _
D Dy PRI IO RTI0)

(d) The periodicity p is detected by selecting the cycle m
that maximizes the autocorrelation coefficient.

2. Template matching

(a) The EEG data in a buffer are divided into p section.

(b) The correlation coefficient p; between x(t) and the
template M, l(p ) is calculated as the following equation.

. (M) (1), (1)) _
VL (0), MP () (@ (1), (1))

“4)

(c) The target is identified by selecting the target that max-
imizes the correlation coefficient.

After the target identfication, the meaningful command related
with the identified target is entered into a external environment.

4. COMPUTER SIMULATIONS

In order to show the feasibility of the proposed method, we demon-
strated the computer simulation. In this simulation, we used four
targets that modulated by non-periodic code and periodic codes, and
tried to detect the periodicity from the EEG.
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4.1. Experimental environment

As shown in Fig.2 (a), four targets were arranged 2 X 2 matrix.
Each target was termed "TO,T1,T2,T3’, and modulated by a non-
periodic code, 2-cycle code, 3-cycle code, and 5-cycle code. Fig.2
(b) presents the modulation codes of all targets. The length of each
code was 60 bits. Visual stimuli were presented on a LCD monitor
with a 60 Hz refresh rate and 1024 x 1280 resolution. Each target
size was set as 300 x 300 squares.

Three healthy adult with normal or corrected-to normal vision
participated in the experiment. The subject were required to fixate
on each target for about 50 stimulus periods. As shown in Fig.3,
eight electrodes placed mostly over visual cortex on positions POz,
PO3, PO4, PO7, PO8, O1, O2 and Oz in the international 10-20
system is adopted. The reference electrode was applied at the left
earlobe and the ground electrode was applied at Fpz position. The
electrodes were connected to the g.USBamp (g.tec medical engineer-
ing GmbH, Austria) as the EEG amplifier. EEG data was recorded
with a sampling rate of 256 Hz.

4.2. EEG analysis method

In order to detect the periodicity in the EEG, the EEG data were used
for offline analysis to calculate the autocorrelation coefficient. At the
beginning of offline analysis, we employ the source derivation (SD)
method as the preprocessing. The SD method can be applied to en-
hance the signal by subtracting the signals of four nearest neighbour
electrodes from the signal of one center electrode multiplied by four.
The SD method is composed of one center signal X. and side sig-
nals X;, (i = 1,2,3,4) which arranged symmetrically around the
center signal. These signals are combined to obtain a new signal as
the following function.

Y () = 4Xc(t) — {X1(t) + Xo(t) + X3(t) + Xa(t)} (5)

In this study, Oz was chosen as the center signal X., and O1, O2,
PO3, PO4 were chosen as the side signals X;.

After the preprocessing, we calculated the autocorrelation coef-
ficient of the enhanced signal Y (¢) in fixating each target to detect
2-cycle, 3-cycle and 5-cycle periodicity. In this paper, we analyzed
the EEG to detect periodicity from 2-cycle to 5-cycle.
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Fig. 3. The electrode position (PO7,PO3,POz,P0O4,P08,01,0z,02)

4.3. Simulation results

Table 1 shows the averaged autocorrelation coefficient of the EEG
in fixating each target. In fixating the TO target, the autocorrelation
coefficient of each cycle calculated by using the proposed method
without SD method were less than 0.09 (There was no significant
difference in the TO, p < 0.01). In fixating the T1-T3 target, the
autocorrelation coefficients of were less than 0.20 (There were sig-
nificant differences in T1, T2 and T2, p < 0.01). However, in fixat-
ing the T1 target, the autocorrelation coefficient of 5-cycle was the
highest value in the all coefficients. Therefore, there is a high possi-
bility that the EEG in fixating T1 target can be identified as T3 target
wrongly. On the other hand, in the case of proposed method with
SD method, autocorrelation coefficient in fixating target modulated
by periodic codes became high collectly.

Talbe 2 shows the periodicity detection accuracy. In the case
of the proposed method without SD method, the accuracy was very
low. The true identification ratio and the flase identification ratio
were about the same vaule. On the other hand, in the case of the
proposed method with SD method, the average true identification

v

v

(b)

Fig. 2. (a)The target arrangement of this simulation. The four targets distributed as a 2 X 2 matrix on the LCD monitor with a 60 Hz reflesh
rate and 1024 x 1280 resolution. (b)The modulation codes of four targets. The trigger became positive at the interval of a stimulus cycle.
The modulation code of TO was non-periodic code, and the modulation codes of T1, T2, T2 were 2-cycle, 3-cycle and 5-cycle periodic codes.
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Table 1. Average autocorrelation coefficient (standard deviation)

Proposed method without SD Proposed method with SD
Target 2-cycle 3-cycle 5-cycle p < 0.01 2-cycle 3-cycle 5-cycle p < 0.01
TO -0.01 (0.26)  0.03 (0.20)  0.09 (0.19) no -0.06 (0.27)  -0.00 (0.18)  0.06 (0.17) no
T1 0.12(0.29)  -0.01 (0.21)  0.14 (0.24) yes 0.31(0.28) -0.09(0.19) -0.19 (0.23) yes
T2 -0.01 (0.25)  0.10 (0.24)  0.01 (0.17) yes -0.27 (0.29)  0.36 (0.32)  0.13 (0.16) yes
T3 0.13(0.26)  -0.04 (0.20)  0.19 (0.22) yes 0.27(0.34)  -0.14(0.21)  0.35(0.31) yes

The numbers in bold represents that autocorrelation coefficients were large value. The significant difference was tested by

analysis of variance (p < 0.01)

Table 2. Periodicity detection accuracy [%]

Proposed method without SD | Proposed method with SD

Target | 2-cycle 3-cycle 5S-cycle | 2-cycle 3-cycle S-cycle
T1 34.8 252 35.6 64.4 7.4 26.6
T2 25.9 48.9 10.4 68.1 11.9
T3 39.3 25.9 48.9 252 244 61.5

The numbers in bold represents that accuracy were large value.

ratio was 64.7 %, and the false identification ratio was less than or
equal to 26.6 %.

4.4. Discussions

This simulation showed the feasibility of the periodic binary codes
to identify the target. The periodicity can be detected from the EEG
in fixating targets modulated by periodic binary codes by calculating
autocorrelation coefficient. Autocorrelation coefficient and period-
icity detection accuracy were increased by using source derivation
method as the preprocessing. Therefore, we confirmed that the en-
hanced EEG signals have periodicity caused by the targets modu-
lated by periodic binary codes. However, it is requeired to improve
the periodicity detection accuracy in order to realize the periodic
code modulation method that is combined periodicity detection and
template matching. In future simulations, it is important to evaluate
different parameter configurations (source derivations, electrode po-
sition, periodic code length, periodicity, target size, target position
in LCD monitor) to optimize the proposed method.

5. CONCLUSIONS

In this paper, we showed periodic code modulation method. The
novelties of our researches are (1) the detailed description of the
BCI based on periodic code modulation, and (2) the feasibility of
the proposed periodicity detection method. In the computer simu-
lations, we used four targets modulated by periodic codes and non-
periodic code, and tried to detect periodicity from the EEG. As a
result, we were able to detect the periodicity with 64.7% accuracy
from the EEG in fixating the target modulated by periodic binary
codes. Therefore, we confirmed the possibility to realize the pro-
posed multi-command BCI method. The multi-command and online
BCI based on periodic code modulation VEP is the main concern as
the future work.
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