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ABSTRACT

In neonatal electroencephalography (EEG) heart activity is

a major source of artifacts which can lead to misleading re-

sults in automated analysis if they are not properly eliminated.

In this work we propose a combination of empirical mode

decomposition (EMD) and adaptive filtering (AF) to cancel

electrocardiogram (ECG) noise in a simplified EEG montage

for preterm infants. The introduction of EMD prior to AF

allows to selectively remove ECG preserving at maximum

the original characteristics of EEG. Cleaned signals improved

up to 17% the correlation coefficient with original datasets in

comparison with signals denoised solely with AF.

Index Terms— EEG, ECG, Adaptive filter, RLS, EMD

1. INTRODUCTION

Prematurity (birth before 37 weeks of gestation) has become

an increasing problem with important consequences for the

newborns health. New effective and more specific monitoring

systems are needed to prevent morbidity and reduce hospital-

ization costs. In practice, acquired electroencephalography

is often contaminated with ECG and an appropriate artifact

removal is of crucial importance for automated analysis.

Preterm EEG is remarkably nonstationary with relevant

spectral content from 0.4 to 30 Hz. Since ECG noise overlaps

this range of frequencies, the use of conventional FIR filters is

dismissed. When interferences and the reference signal have

a similar waveform, a solution can be found with adaptive

filters (AF) using the recorded ECG. Celka et al. [1] used

linear FIR filters and normalized least mean squares (NLMS)

adaptation to cancel ECG in newborns EEG. When ECG is

low correlated with pulse artifacts, or it is not available, an

alternative can be found by generating an artificial reference

from the contaminated EEG. However, in spite of its robust-

ness and simplicity, adaptive filters tend to be unstable and

less performing under nonstationary environments.

Another common technique is the artifact removal based

in the independent component analysis (ICA). Performing

ICA, the unwanted ECG artifact should be in one component

[2], but the efficiency of the denoising process depends on the

availability of an important number of derivations. Convolu-

tive ICA [3] has good results separating cardiac noise from a

single EEG lead and a ECG reference, but its high computa-

tional cost makes it inadequate for real-time applications.

Empirical mode decomposition (EMD) has been recently

used as a tool for selective removal of artifacts in combination

with other techniques as ICA [4] thanks to its efficient and

natural way of decomposing data in independent oscillatory

modes (IMFs). In this work EMD is employed to decompose

the EEG into several IMFs, and those modes containing car-

diac artifacts are denoised by an adaptive filter. This approach

is related to adaptive filtering in sub-bands, where the input

signal is decomposed into multiple parallel channels by a fil-

ter bank to facilitate a more effective noise cancellation with

less complex sub-filters. However, while this framework em-

ploys Fourier or wavelet-based transforms to obtain the sub-

bands, our proposal performs EMD, more advantageous with

nonstationary signals [5].

2. METHODS

The proposed method is divided in four blocks (Fig. 1). First,

EMD is performed to obtain M IMFs, 10 or 11 in our EEG

(see example in Fig. 2). The spectral independence of IMFs

allows the recomposition block to easily estimate the main

frequency of each mode from its power spectral density (Burg

method, order 30). Then, two components are constructed:

EEGH and EEGL. The former is the addition of high fre-
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Fig. 1. Block diagram describing the proposed methodology.
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quency modes carrying ECG-related content (typically ≥ 5
Hz), and the latter contains the remaining IMFs, carrying δ-

waves (0.4 - 4 Hz) and low frequency noise (LFN). Then, the

AF block removes ECG in EEGH using the recorded ECG

as a reference and yields ̂EEGH . Recursive least square

(RLS) algorithm is used for its effective and fast adaptation

to EEG complexity. Finally, the reconstruction block selects

from EEGL the noise-free IMFs to add them to the AF out-

put and reassemble the denoised EEG. This procedure permits

the AF to perform effectively because EEGL, with nonsta-

tionary content, is set aside of the filtering process. Another

implicit benefit is the omission of a high-pass filter, which

may deteriorate δ-bursts in the EEG.

2.1. Empirical Mode Decomposition

Empirical mode decomposition is an adaptive method de-

signed to unmix a non-linear and non-stationary signal s(n)
in a set of intrinsic modal functions (IMFs), each one con-

taining a spectrally independent oscillatory mode [5]. They

must satisfy two conditions: 1) the number of extrema and

zero-crossing must be equal or differ at most by one, and 2)

the mean value of the upper and lower envelopes must be

zero. IMF extraction, known as sifting process, is described

as follows:

1. Find local minima and maxima of s(n).

2. Form upper, eu(n), and lower, el(n), envelopes by cu-

bic splines interpolation.

3. Find the mean, m(n) = eu(n)+el(n)
2 .

4. If h(n) = s(n)−m(n) is not an IMF, go to step 1 using

h(n) instead if s(n). Else, h(n) = IMF1(n).

5. If the residue, r1(n) = s(n)−IMF1(n) has more than

a zero cross, go to step 1 and find next IMF.

Once IMFk(n) are extracted, the signal can be expressed as:

s(n) =

M∑

k=1

IMFk(n) + r(n) (1)

Later, ensemble EMD (EEMD) was introduced to reduce the

corruption of unmixed modes when noisy signals were an-

alyzed. EMD is performed I times, each one decomposing

si(n) = s(n) + wi(n), where wi(n) are different realiza-

tions (i = 1, .., I) of white noise, with variance ε. Then,

the final oscillatory modes (IMF k) are obtained by averag-

ing the ensemble of IMF i
k. Recently, the complete EEMD

with adaptive noise (CEEMDAN) [6] was proposed to ame-

liorate the spectral separation of modes and reduce compu-

tational cost. In EEMD each si(n) is decomposed indepen-

dently, so that one residue rik(n) for each is obtained. How-

ever, in CEEMDAN only one residue rk(n) is produced by

modes, noted IMF ′
k. So the first residue is r1(n) = s(n) −

IMF ′
1(n), where IMF ′

1(n) is computed as in EEMD. Then,
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Fig. 2. Noisy EEG decomposed with EMD. The sum of

IMF1 to IMF4 (main freq. > 5 Hz) constitutes EEGH .

EMD is performed over a set of r1(n) plus different noise re-

alizations, to obtain IMF ′
2(n) by averaging. The next residue

is r2(n) = r1(n) − IMF ′
2(n), and so on, until the stopping

criterion is achieved.

2.2. Adaptive filtering based on RLS

Adaptive filters can reduce interferences modifying iteratively

their coefficients from the input x(n), the recorded ECG, to

generate an output y(n) similar to the artifacts contained in

d(n), the noisy EEG (see Fig.1). The difference between d(n)
and y(n), e(n), is fed back into the linear filter H(Z), with

order L and coefficients w(n) [7]. Adaptation minimizes the

cost function, i.e. the weighted least square of e(n), given by:

ξ(n) =

n∑

k=1

λn−k|e2(k)|+ δλn||w(n)||2 (2)

where λ is the forgetting factor (0 < λ ≤ 1), so that the closer

is its value to one, the more importance is given to recent

samples. δ is the regularization factor, positive and real. Then,

RLS updates the filter coefficients by means of:

w(n+ 1) = w(n) + e(n)k(n) (3)

k(n) =
P(n)u(n)

λ+ uT (n)P(n)u(n)
(4)

with u(n) = [e(n), e(n − 1), ...e(n − L + 1)]T . P(n) is

the inverse correlation matrix of the input signal. Initially,

w(0) = 0 and P(0) = δ−1I, with I the identity matrix. Next,

P(n) is recursively updated by performing:

P(n) = λ−1P(n− 1)− λ−1k(n)uT (n)P(n− 1) (5)
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Fig. 3. Generation of artificially contaminated datasets A:

EEG without artifacts. B: ECG signal. C: EEG contaminated

with ECG and low frequency noise (group 3).

3. VALIDATION

To quantitatively evaluate the efficacy of the denoising

method, simulation signals were created from real artifact-

free EEG. Data was acquired from premature infants at the

University Hospital of Rennes (CHU Rennes, France) at 512

Hz sample frequency in four scalp positions (Fp1, Fp2, T3

and T4), then subsampled to 128 Hz and low-pass filtered

with a cutoff frequency of 35 Hz. Sixty representative ex-

cerpts of 10 seconds, comprising several patients and deriva-

tions, were selected after visual inspection to ensure the

nonexistence of noise.

Then, we added to this selection (noted EEG) the cardiac

artifacts (ECG′), creating the noisy EEG (EEGn). ECG′

was obtained by processing the recorded ECG by an order 5

filter as done in [3]. The signal-to-noise ratio was adjusted to

15 dB. To recreate different scenarios, we derived 3 groups

(of 20 excerpts) from EEGn:

1. EEG′
1 = EEG + ECG′ = EEGn

2. EEG′
2 = EEGn + slow δ-waves (0.4 - 1 Hz)

3. EEG′
3 = EEGn + LFN (0.1 - 0.3 Hz)

Groups 2 and 3 were created adding an entire cycle placed

randomly in the excerpt, with frequencies set randomly be-

tween the limits above described. δ amplitudes were fixed

according typical values [8] and LFN to 40 μV (see Fig. 3).

Once simulation signals were generated, we tested our

method with 2 variations: (1) using the classical EMD al-

gorithm, and (2) applying CEEMDAN with I = 500 and

ε = 0.2. We also tested the adaptive filter without the prior

EMD layer. So, EEG′
1 and EEG′

2 were cleaned directly by

the AF, and EEG′
3 was previously high-pass filtered (Butter-

worth order 5, 0.3 Hz cut-off frequency). The order of the

adaptive filter was set to 8, λ to 0.999 and δ to 0.01.

Finally, cleaned datasets (̂EEGi, with i = 1, 2, 3 represent-

ing the three groups) were compared to the original ones by

finding the normalized correlation coefficient (γ).

Signal-to-noise ratio (SNR) was also measured in ̂EEGi by

using equation 6:

SNR = 10 log
P (EEG)

P (EEGn − ̂EEGi)
(6)

where P is the power of the signal in brackets. While γ mea-

sures template matching, i.e. the preservation of the original

EEG trace, SNR quantifies the residual QRS complexes in the

cleaned signal, and thus, the ECG removal effectiveness.

4. RESULTS AND DISCUSSION

Regarding the results in table 1, it can be stated that the com-

bination CEEMDAN+AF is the best method to cancel ECG

retaining reliably the original EEG information. In normal

EEG activity (Group 1) it has the greatest average correlation

values, improving EMD+AF and AF results by 2% and 3%

respectively. This combination achieves as well stable perfor-

mances in different scenarios with lower standard deviations.

The presence of δ-waves in EEG (Group 2) decreases

globally the performance of the denoising methods, with

lower and more dispersed γ values. Here, the adaptive filter

has more difficulty to track the signal, yet the introduction of

EMD reduces partially this effect (see example in Fig. 4B).

Low frequency noise (Group 3) is known to perturb the

AF efficacy, so prior high-pass filtering is necessary. The car-

diac noise is canceled acceptably but at the cost of deterio-

rating the EEG (see Fig. 4C) because the cutoff frequency is

very close to the delta components. Nevertheless, processing

the EEG previously with EMD improves remarkably the sim-

ilarity with the original signal (by 14% with classical EMD

and 17% with CEEMDAN) since the low frequency noise is

separated without the undesired effects of the high-pass filter.

For EMD methods, better SNR are obtained, paradoxi-

cally, when EEG contains δ and LFN. Since spectrum be-

comes wider, IMFs main frequencies are more spaced and

Table 1. First column: Average correlation values between

the original and the unfiltered noisy EEG and its SNR be-

fore denoising. Other columns: correlations and SNRs of de-

noised EEG with the different techniques in the three studied

scenarios (best results in bold).

Noisy AF EMD+FA CEEMDAN

EEG +AF

EEG′
1

mean±std(γ) 0.72±.08 0.94±.06 0.96±.03 0.97±.02
SNR(dB) 15 45.9±5.3 50.0±9.0 50.1±7.5
EEG′

2

mean±std(γ) 0.78±.09 0.90±.13 0.90±.12 0.94±.11
SNR(dB) 15 45.9±11.5 46.1±11.1 48.8±6.1
EEG′

3

mean±std(γ) 0.72±.09 0.77±.15 0.91±.10 0.94±.07
SNR(dB) 15 47.5±8.3 51.4±10.2 53.5±7.5
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Fig. 4. Examples of denoised signals (A: ̂EEG1; B: ̂EEG2.

C: ̂EEG3) comparing the three methods.

ECG-related modes can be isolated neatly. Superior perfor-

mance of CEEMDAN is, in general, due to its better IMF

spectral separation, which allows to reconstruct more reliably

the original signal. However, the computational cost is high:

102 times EMD+AF and about 104 times AF.

Finally, the three methods were tested with real noisy

data to verify the results. Cleaned signals (see example in

Fig. 5) presented visibly better ECG cancellation, low fre-

quency removal and better EEG preservation in combinations

EMD+FA and CEEMDAN+FA.

1 2 3 4 5 6 7 8 9

B

A

time (s)

Fig. 5. A: Real EEG (grey trace) denoised by a high-pass

filter + AF. Marks corresponds to ECG peaks. In black, the

denoised signal. B: The same EEG denoised with EMD+AF.

5. CONCLUSION

In this work a novel methodology to cancel ECG from EEG

is proposed by applying empirical mode decomposition prior

to adaptive filtering. Since only one EEG lead is needed, it

is suitable for neonatology recordings as they usually have a

limited number of channels. Moreover, typical preterm EEG

nonstationarities are set aside of the process, which allows

the AF to easily cancel ECG. Denoised signal is then re-

constructed, recovering δ components and rejecting low fre-

quency noise without the need of introducing a high-pass fil-

ter. As a result, an artifact-free EEG with minimal informa-

tion loss is returned. In view of the advantages of EMD and

AF, this combination could be useful in neonatal polysomnog-

raphy systems and clinical tools dealing with EEG quantita-

tive analysis. In spite of CEEMDAN+AF had the best re-

sults, its time-consuming algorithm cannot be integrated in

real-time applications. Classical EMD+AF arises, then, as a

trade-off between speed and performance.
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