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Abstract—  Electroencephalography (EEG) is the
recording of electrical activity along the scalp produced
by the firing of neurons within the brain. These activities
can be decoded by signal processing techniques,
however, they are typically influenced by extraneous
interference, like muscle movements, eye blinks, eye
movements, background noise, etc. Therefore, a
preprocessing step to remove artifacts is extremely
important. This paper presents an effective artifact
removal algorithm, based on Independent Component
Analysis (ICA) and Hierarchical Clustering. Our
technique utilizes general temporal and spectral features
and particular information about target Event-Related
Potentials (ERPs) (e.g. the timing of N200 and P300 on
inhibition task or the specific electrodes contributing to
the ERPs) to separate ERPs and artifact activities. Our
method considers templates for desired ERPs to select
event-related components for signal reconstruction. In
our experimental study, we show that our proposed
method can effectively enhance the ERPs for all fifteen
subjects in the study, even for those that barely display
ERPs in the raw recordings.

Index Terms— EEG, ICA, Hierarchical Clustering

1. INTRODUCTION

THE electroencephalogram (EEG) systems capture brain
activities from the scalp. Several types of cognitive
functions and underlying brain states have been associated
with EEG signals: language tasks, information coding, and
response inhibition. EEG signal analysis provides
researchers with a better understanding of brain activities
that can potentially be used for diagnosis and treatment.
EEG signals are recorded by a set of electrodes placed over
the scalp. These electrodes are capable of capturing action
potentials, which are electrical impulses used to
communicate information between neurons and from
neurons to muscle fibers. Since EEG signals are highly
susceptible to noise and artifacts, it is almost impossible to
see any Event-Related Potentials (ERPs), the stereotyped
electrophysiological responses to an internal or external
stimulus, on the raw EEG signals. However, neuroscientists
are often interested to visualize the signals and their time
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domain ERPs such as N200 (a negative peak around 200 ms
after the excitation of the stimuli that is mainly observed on
Fz channel electrodes) or P300 (a positive peak around 300
ms after the excitation of the stimuli that is mainly observed
on Fz ) [1]. Researchers often rely on manual cleaning of the
signals with assistance from Independent Component
Analysis (ICA) [2, 3]. However, that process is lengthy,
time consuming, subjective and unpruned to human errors.
Currently, there exist a few automatic artifacts removal
methods. However, some of these techniques only focus on
removing particular artifacts such as EOG [4] and BCG [5].
Other investigations only use general features, such as
lagged auto-mutual information [6], pair-wise mutual
information [7, 8], temporal information and spectral
information (e.g. power density distribution on various
frequency bands) [9]. They do not consider features that
would highlight target ERPs (e.g. the timing or the specific
electrodes contributing to the ERPs) in the artifacts removal
framework. Therefore, the prior techniques cannot
effectively enhance the wvisibility of ERPs in the
reconstructed signal. However, in our proposed technique,
utilization of features that contribute to the target ERPs will
create relevant clusters and signals of higher quality.

In this paper, we introduce a novel method for automatic
artifact removal which can significantly enhance
prominence of ERPs in the clean signal. This method is
based on separation of the raw multichannel EEG recordings
into Independent Components (ICs) and subsequent
clustering these component based on general features (e.g.
temporal and spectral information) and also with special
event-related features (e.g. the timing of N200 and P300 and
their corresponding electrodes for inhibition task). Finally,
we use templates of the desired ERPs to identify and remove
components with artifacts, while retaining the relevant
components that will be used to reconstruct the clean signal.
The novelty of the proposed algorithm lies on the use of
event-related features in the clustering procedure, and the
use of eventrelated template in the cluster-selection
procedure to objectively identify event-related components.

2. RELATED WORKS

Unfiltered EEG signals are usually associated with artifacts
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such as eye blinks, eye movements, muscle movements,
background noise, and heart beat signals. All these non-
event related components affect the fidelity of EEG signals.
They create challenges for extracting useful ERPs and for
the analysis and the visualization of the EEG signals.
Therefore, a large body of prior work has been investigating
artifact removal techniques. Among them, the most popular
approach is the ICA. The ICA method has been shown to
effectively separate artifacts, event-related activities, and
non-event-related activities into different components [10].

Manual IC selection in ICA require expert and well
trained staff. Therefore, automatic IC selection has become
an attractive alternative. Researchers have investigated
automatic clustering techniques to group similar ICs after
application of the ICA, based on specific features extracted
from each IC. Several features and clustering methods have
been presented. H, Qi et al/ presented a K-means clustering
based on the similarity between every two components in
multi-trial EEG analysis [11]. Another commonly used
clustering method is fuzzy C-means clustering [9, 12]. Both
K-means and fuzzy C-means clustering are iterative
methods. They both require the target number of clusters a
priori to terminate the clustering iterations. Clustering
methods like hierarchical clustering have been used because
the target number of clusters often is unknown for artifact
removal. N. Nicolaou et al propose an artifact removal
algorithm via hierarchical clustering based on auto-mutual
information [6]. M. Milanesi et al utilize the pair-wise
mutual information as hierarchical clustering feature for
EEG late potential selection [7, 8]. However, using mutual
information or temporal and spectral information is not
always enough to highlight ERPs. For this reason, we
propose a clustering method that uses relevant features to
the target ERPs and use a template matching technique to
select relevant ICs and clusters.

3. METHODS

3.1 Independent Component Analysis (ICA)
The first step in our proposed algorithm is the ICA
transform. ICA is a computational method for separating a
multi-channel signal into additive subcomponents supposing
the mutual statistical independence of the non-Gaussian
source signals [13]. Assume that we observe an array of
electrodes that provide a vector of N channel signals
v(t)=[vi(t), vo(t), ..., va(t)]" that are linear combinations of
N unknown and statistic independent sources s(?)=/s;(?),
$a(1), ..., sy(t)]. The objective of the ICA algorithm is to
find a separating matrix W, such that
s(1) =W % v (1) M)

When applying the ICA to the EEG signals, the resulting
independent components represent the event-related
potentials and non-event-related sources (including artifacts)
[10]. This makes the ICA to be an effective method for
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removing the artifacts. The inverse matrix W' gives the
relative projection strengths of the respective components to
each of the scalp electrodes, which will be used as features
for further clustering. These inverse weights define the scalp
topography of each component, and provide the evidence for
the components’ physiological origin [2].

Several ICA algorithms have been implemented and are
publicly available. In this paper, we use the FastICA
algorithm in the EEGLAB [14] to transform the original
multi-channel EEG signals into ICs.

3.2 Features Extraction and Clustering

To group independent components (ICs), a hierarchical
clustering approach is chosen for two reasons. Firstly, the
dendrogram in clustering not only encapsulates the grouping
for clusters, but also provides information on the closeness
of the elements in each cluster that corresponds to the height
of the node. Secondly, the entire clustering procedure can be
accomplished without determining the number of clusters a
priori. In particular, four kinds of features are extracted for
clustering.

1) Spectral features: The main power of EEG signals are
in delta band (0-4 Hz), theta band (4-8 Hz), alpha band (8-
13 Hz), beta band (13-30 Hz), and gamma band (30-80 Hz).
Additionally, the artifacts show dissimilar power
distribution compared to event-related components. These
differences can be represented by the ratios of spectral
power (50/30 Hz, 50/20 Hz, 50/10 Hz, 40/20 Hz, 20/10 Hz,
and 10/5 Hz).

2) Topographical features: The artifacts and the event-
related potentials are projected on different groups of
electrodes. For instance, the Go/NoGo-related potentials are
concentrated on the frontal and central electrodes (around Fz
channel), while the eye blinks project most strongly to the
far frontal site on the scalp [1]. Topographical features can
be presented by the median of the component’s weight.

3) Similarity over trials: The artifacts are random,
unexpected, and usually only occur in parts of the trials.
Thus, the trials that contain artifacts have no common
pattern and exhibit very low similarity with other trails. On
the other hand, the trials with event-related components
exhibit higher similarity with other trials. The average
normalized cross correlation value is adopted to measure the
similarity among trials. Several trials are concatenated to
compose v(2).

4) Temporal features: The kurtosis for each component
was employed.

Overall, a 10-dimension feature vector (6 spectral
features, 1 topographical feature, 2 similarity features and 1
temporal feature) is used for hierarchical clustering.

3.3 Event-related Cluster Selection

Since the artifacts can randomly occur and are unexpected,
they are difficult to identify. Thus, instead of detecting and
removing artifacts, our approach is to extract the event-
related components based on a global pattern that



encapsulates models for signals of interest (e.g. N200,
P300). In this investigation, we use the inhibition task with
Go and NoGo stimulus. Neuroscientists have found that, for
the inhibition task, most event-related components project
strongly around Fz channel and have two fixed significant
ERP patterns: N200 and P300 [1]. N200 is a negative
deflection occurred after 200 ms, constrained to the frontal
scalp locations. P300 is a large positive deflection occurred
after 300 ms in the frontal, central, and the parietal regions.
In addition, the difference of amplitude between N200 and
P300 for NoGo signals is larger than Go signals [15]. Hence,
we build a template based on this a priori knowledge to
guide the cluster selection procedure. We then calculate the
contribution of each cluster to the desired ERPs (N200 and

P300) for the cluster selection. The contribution value @ ;

(Eq. 3 & 4) for each cluster is presented by the average
back-projection value p; (Eq. 2) in a specified time range.

P =W (i) *ep (i) )

p; is the back projection value of component i, W ~'is the
inverse weight matrix, cp is the component matrix.
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¢;’ *is the contribution value for desire ERP (P300) of

cluster j, ¢1"2 is the contribution value for N200, m is the
total number of components included in the cluster j and ¢ is

the specified time range. In our study, we define ¢ ;2 =200

ms, ¢, =300 ms, £, =300 ms, £, =500 ms.
Finally, the cluster ; which maximizes the difference
between @ and ;" is chosen, the all its components are

used to reconstruct the clean signal.

4. EXPERIMENTAL SETUP

We collected EEG data from 15 participants. All subjects
were asked to complete the standard Go/NoGo tasks, in
which, the subject is instructed to push a button if green up-
arrow (Go) is shown on a display, and do nothing if red
octagon (NoGo) is presented. Go/NoGo stimuli are
presented for 300 ms followed by 1700 ms of blank screen.
For each subject, we collected 80 trials of Go and 20 trials
of NoGo. Continuous EEG signals were recorded from 64
electrodes sensor cap placed according to the modified
international 10-20 system. The EEG signals were sampled
at 1000 Hz, and filtered by a band pass filter with a cutoff
frequency of 0.5-100 Hz.
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5. RESULTS

Among all 15 subjects, only 6 had visible desired ERPs
(N200-P300) in the original Go/NoGo signals, which are
averaged over all trails. After our proposed ICA-clustering
based automatic artifact removal algorithm, all 15 subjects
had enhanced view of N200-P300 complex in the refined
Go/NoGo signals.

The signal before and after our artifact removal
techniques are shown in Fig. 1 and 2 for two selected
subjects. Figure 1 shows the results of one subject which
obtains the visible view of ERPs (N200-P300) in the
original Go/NoGo signals. The average Go/NoGo signals for
all trials before artifact removal are shown in the left
diagram of (a). The average signals after the automatic
artifact removal is shown in the right diagram of (a). As
indicated in Fig.1 (a), after ICA-clustering procedure, the
N200-P300 complex is more prominent. Furthermore, we
introduce the following measures to assess the effectiveness
of our proposed approach highlighting N200 and P300,
which we call the Negative-to-Positive Ratio (NPR). The
NPR measure is the difference in amplitude between N200-
P300 peaks for Go/NoGo (Eq. 5).

Pn Py P}’lN2 (5)
Pgpy— Pgy,
NPR is the ratio value, Pn,, and Ppn,, are the peak

amplitude values of P300 and N200 for NoGo signals,
respectively, and Pg,,and Pg,, are the peak amplitude

NPR =

values of P300 and N200 for Go signals, respectively. We
expect to observe larger peak-to-peak amplitude for NoGo
over Go [15]. Therefore, the NPR is expected to be larger
than one. The result shows the NPR for before and after
processing are 0.8 and 1.2 respectively, proving a clear
improvement in visualization of desired ERPs. The slope of
N200-P300 complex for Go/NoGo signal is another measure
that we use to assess if N200 and P300 are well pronounced.
We observe that the slope increases from 1.2 to 1.8 after the
application of our method. Fig. 1(b) represents the single-
trial ERP image for the original and refined Go/NoGo
signals. These plots illustrate the effectiveness of the
proposed technique enhancing individual ERPs in single
trial, especially for the NoGo signals.

Figure 2 depicts the signals for another subject. N200-
P300 complex is not visible in the left diagram which
depicts the average of trials before artifact removal. As
shown in the right diagram, after artifact removal, a view of
N200-P300 is clearly recognizable. It demonstrates that the
proposed algorithm can effectively extract the ERP from
even when there are no clearly visible ERPs in the original
signals.

Overall, for the 6 subjects, with visible N200-P300
complex in the original signals, the average NPR is
increased from 1.1 to 1.6 and the average slope of N200-



P300 complex is increased from 1.3 to 2.1, after our artifact
removal procedure. These results illustrate the effectiveness
of the proposed algorithm removing the artifacts and other
non-event-related sources, and highlighting N200-P300
complex on all subjects. Researchers and clinicians may use
the refined signals, the timing and the relative amplitude of
N200 and P300 for better investigation and clinical
diagnosis.
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Refined Go/NoGa signals
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Fig. 1 EEG signals for subject with visible N200-P300 in the original signals

(a) Left: Average of original Go/NoGo signals. Right: Average of refined signals.

Both exhibit N200-P300 plex, but the plex b more prominent after

application of our proposed technique

(b) Top: Single-trial ERP of original Go signals (left) and original NoGo signals

(right) Bottom: Single-trial ERP of refined Go signals (left) and refined NoGo

signals (right), they both show the enhanced view of N200-P300 ERPs.
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Fig. 2 EEG signals for subject with no visible N200-P300 in the original signals
(Left) Average of original Go/NoGo signals. (Right) Average of refined signals.
The original Go/NoGo averages do not exhibit N200-P300 complex, and the
refined Go/NoGo averages clearly show N200-P300 complex

6. CONCLUSION
In this paper, we described an ICA based clustering
algorithm to automatically extract event-related components
and refine raw EEG signals. We first obtained independent
components from multi channel raw EEG signals using ICA
transform. Subsequently, for each independent component,
we extracted a 10-dimensional feature vector that contained
spectral, temporal and topographical features, along with
features based on similarity measures. We wused a
hierarchical clustering technique to group all independent
components into several hierarchical clusters, and selected a
suitable cluster based on pre-determined template
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constructed for desired target ERPs (in our study, we used
N200 and P300 in the inhibition task). Finally, we
reconstructed the refined EEG signals using ICs in the
selected cluster through the inverse ICA transform. Using
our proposed artifact removal technique, the visibility of
event-related components (N200-P300 complex) was clearly
increased. The NoGo signals have larger amplitude and
sharper slope than Go signals in the refined signals.
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