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Abstract— Humans need communication. The desire to communicate
remains one of the primary issues for people with locked-in syndrome
(LIS). While many assistive and augmentative communication systems
that use various physiological signals are available commercially, the
need is not satisfactorily met. Brain interfaces, in particular, those
that utilize event related potentials (ERP) in electroencephalography
(EEG) to detect the intent of a person noninvasively, are emerging
as a promising communication interface to meet this need where
existing options are insufficient. Existing brain interfaces for typing
use many repetitions of the visual stimuli in order to increase accuracy
at the cost of speed. However, speed is also crucial and is an integral
portion of peer-to-peer communication; a message that is not delivered
timely often looses its importance. Consequently, we utilize rapid serial
visual presentation (RSVP) in conjunction with language models in
order to assist letter selection during the brain-typing process with
the final goal of developing a system that achieves high accuracy
and speed simultaneously. This paper presents initial results from the
RSVP Keyboard system that is under development. These initial results
on healthy and locked-in subjects show that single-trial or few-trial
accurate letter selection may be possible with the RSVP Keyboard
paradigm.

Index Terms—Brain computer interface, language model, event
related potential, Bayesian fusion

I. INTRODUCTION

Brain computer interfaces (BCI) are seen as the future of
human computer interaction. In particular, BCI-enabled devices
that will allow people with severe speech and motor disabilities
to communicate and interact with their personal networks and
environments have received significant interest by the research
community in the last decades [1], [2]. Noninvasive BCI design
paradigms, particularly those using electroencephalography (EEG),
are increasingly popular due to their portability, noninvasiveness,
cost-effectiveness, and reliability [1], [2], [3]. A large portion of
the functionally locked-in population may lack precise gaze control
to be able to use the commercially available eye-tracking based
systems and the matrix layout based P300-speller [1] paradigms.
Therefore, by also considering the possible heavier cognitive load
of matrix based paradigms, we pursue the rapid serial visual
presentation (RSVP) paradigm which does not require precise gaze
control to discriminate intent between various symbols that one
could choose from [4], [5]. Our approach, referred to as the RSVP
Keyboard, allows user to sequentially scan the options until the
desired symbol is selected as opposed to the two-tiered selection
mechanism of Hexo-Spell by the Berlin BCI group [3]. In the RSVP
paradigm, each candidate letter is shown at the same place on the
screen in a temporally ordered sequence at a comfortably high
presentation rate. In the current prototype system, EEG responses
corresponding to each visual stimuli are assessed using regularized
discriminant analysis (RDA).
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Due to the low signal-to-noise ratio in EEG (where noise is
primarily due to irrelevant brain activity), current BCI typing
systems require a high number of stimulus repetitions, resulting in
low symbol rates. Hierarchical symbol trees may lead to some speed
increase [3], [6], [7]. Our simulations indicate that with error-prone
binary-intent-detectors (such as ERP-detectors), for the English
language, the expected bits-per-symbol is negligibly degraded in
the RSVP paradigm (to about 3bits/symbol at no error in intent
detection) compared to the Huffman tree (about 2.5bits/symbol with
no errors in binary intent detection), which minimizes the expected
bits to type a symbol [8]. Probabilistic incorporation of a language
model in decision making (as opposed to simple word completion)
could help improve EEG classification accuracy, therefore increase
speed by reducing the number of stimulus repetitions required to
achieve a certain level of accuracy.

In this paper, we present the design and initial results of the
RSVP Keyboard system, a novel RSVP and EEG based BCI
typing system, which tightly incorporates language models into the
decision mechanism. The fusion of language and EEG evidence is
achieved using a probabilistic framework, assuming that these two
pieces of evidence are conditionally independent given class labels
(a symbol is desired or not). An extensive off-line analysis of the
proposed fusion approach was done in a previous study [9]. An
initial demonstration of RSVP keyboard was done in [10]. Here we
focus on the first analysis of real-time closed-loop typing results
using the designed prototype, using number of stimulus repetitions
per symbol as the primary performance measure.

II. METHODS

The RSVP Keyboard consists of three main components: (1)
visual presentation, (2) EEG data acquisition, and (3) the decision
mechanism to select a symbol to type. During the typing of each
symbol, EEG responses to all symbols are collected and the selec-
tion of the symbol to be typed is based on this EEG evidence and
the language model assessment of each candidate symbol. This tight
incorporation of language evidence in EEG response evaluation
sharply separates the RSVP Keyboard from existing prototypes
of BCI spellers. While the fusion of language information helps
improve speed and accuracy, the use of RSVP eliminates precise
gaze control to focus one’s attention on a relatively narrow region
on the display - a challenging feat for most members of the target
population, and a crucial requirement for these BCI systems to work
properly [11].

A. RSVP: Rapid Serial Visual Presentation

RSVP is a presentation technique in which visual stimuli are
displayed as a temporal sequence at a fixed location on the screen
and with arbitrarily large sizes if needed. In contrast, the Matrix-
P300-Speller places all symbols on the display in a matrix and
highlights a subset (for instance, a column, a row, checkerboard, or
an individual letter) [1], [12]. Berlin BCI’s recent variation of their
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ERP-based Hexo-Spell uses an RSVP like presentation at the central
area, while options (sets of symbols) are displayed around it [3].
RSVP is particularly useful for most users with weak or no gaze
control and for those whose cognitive skills do not allow processing
matrix presentation of letters. An example screen snapshot from the
current RSVP Keyboard prototype is given in Fig. 1. The optimal
layout of the screen is a point of research in itself and we will not
discuss that issue in detail here.

Fig. 1. RSVP keyboard interface

In the current study, RSVP contains random permutations of the
26 letters in English alphabet, a space symbol and a backspace
symbol (a total of 28 symbols to choose from). If repetition
is needed, all symbols are repeated multiple times to improve
classification accuracy until a preset desired confidence level is
reached1. In the RSVP Keyboard, the user is assumed to show
positive intent exactly for one symbol per epoch (section in which
user types a symbol of the text). Each epoch contains a block of
sequences, currently containing all 28 symbols, of which one is
the target symbol. During the calibration phase (classifier training
session), a designated target symbol is shown before each epoch, so
that the user focuses his intent on this known given symbol in order
for the classifier calibration to have labeled positive and negative
intent examples of EEG responses.

B. EEG feature extraction via regularized discriminant analysis

As a response to the infrequent target stimulus shown in RSVP
sequences, the brain generates event related potentials including
the P300 wave - a positive deflection in the scalp voltage mainly
in the centro-parietal areas with an average latency just over 300
ms. This natural novelty detection or target matching response
allows us to detect intent using EEG signals. This process starts
with extracting stimulus-time-locked bandpass filtered EEG signals
for each stimulus in the sequence. Since physiologically, the most
relevant signal components are expected to occur within the first
500ms following the stimuli, the [0,500)ms portion of the EEG
following each stimulus is extracted. At this stage it is important
to design bandpass filters whose group delay does not shift the
physiological response to outside this interval. A linear dimension
reduction is applied on the temporal signals using Principal Com-
ponent Analysis in order to to remove zero variance directions (i.e.
zero-power bands based on the estimated covariance). The final
feature vector to be classified is obtained as a concatenation of
the PCA-projected temporal signals for each channel. Regularized
Discriminant Analysis (RDA) [13] is used to further project the

1In future designs, we are contemplating adaptive and optimal sequencing
of a subset of candidate symbols to save time and increase speed without
negatively affecting accuracy - initial results are encouraging.

EEG evidence into scalar-feature for use in fusion with language
model evidence.

RDA is a modification of quadratic discriminant analysis (QDA).
QDA yields the optimal minimum-expected-risk Bayes classifier
under the assumption of multivariate Gaussian class distributions.
This classifier depends on the inverses of covariance matrices for
each class, which are estimated from training data. In BCI, to
keep the calibration phase short, few training samples are acquired
- especially for the positive intent class. Therefore, the sample
covariance estimates may become singular or ill-conditioned for
high-dimensional feature vectors, which is the case here. RDA
applies shrinkage and regularization on class covariance estimates.
Shrinkage forces class covariances closer towards the overall data
covariance as

Σ̂c(λ) = (1 − λ)Σ̂c + λΣ̂, (6)

where λ is the shrinkage parameter; Σ̂c is the class covariance
matrix estimated for class c ∈ {0,1} with c = 0 for non-target
class and c = 1 for target class; Σ̂ is the weighted average of class
covariance matrices. Regularization is administered as

Σ̂c(λ,γ) = (1 − γ)Σ̂c(λ) +
γ

d
tr[Σ̂c(λ)]I, (7)

where γ is the regularization parameter, tr[⋅] is the trace func-
tion and d is the dimension of the data vector. We employ the
Nelder-Mead simplex-reflection method [14] to optimize the free
parameters λ and γ such that a local maximizer of the area-under-
the-ROC-curve (AUC) estimated using 10-fold cross-validation is
achieved.

After regularization and shrinkage, the covariance and mean
estimates for each class are used in generating a scalar feature that
minimizes expected risk under the Gaussianity assumption of class
distributions. This is the log-likelihood ratio

δRDA(x) = log
fN (x; μ̂1

, Σ̂1(λ,γ))π̂1

fN (x; μ̂0
, Σ̂0(λ,γ))π̂0

, (8)

where μc, π̂c are estimates of class means and priors respectively;
x is the data vector to be classified and fN (x;μ,Σ) is the pdf of
a multivariate Gaussian (normal) distribution.

C. Language modeling

For many text processing applications language modeling con-
stitutes an important part; likewise, it is significant for BCI typing
systems as demonstrated in our earlier analysis of various letter
scanning options used in BCI speller designs [8]. Typically, previ-
ously written text is used to predict upcoming symbols, which might
become very predictable in some contexts and symbol locations.
Especially in situations where symbol output rate is low, language
modeling can have a significant impact on speed and accuracy.

In letter-by-letter typing, we adopt n-gram language models at the
symbol level. These models estimate the conditional probability of
a letter given n − 1 previously typed letters. Let W be a sequence
of letters where Wi is the ith letter and S be the set of candidate
symbols. For an n-gram model, the conditional probability of Wi

given previously written symbols, W ′
j , is obtained from (1), s ∈ S

and the joint probabilities are estimated by regularized relative
frequency estimation from a large text corpus. The backspace
symbol is assumed to have a constant conditional probability of
0.1 and the conditional probabilities of the other symbols are
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P (Wi = s∣W
′
i−1,W

′
i−2,⋯,W

′
i−n+1) =

P (Wi = s,W
′
i−1,⋯,W

′
i−n+1)

P (W ′
i−1,⋯,W

′
i−n+1)

(1)

P (cs = c∣δRDA(xs),W
′
i−1) = P (cs = c∣δRDA(xs,1), δRDA(xs,2),⋯, δRDA(xs,NS

),W′
i−1) (2)

=
(∏

NS

ns=1
P (δRDA(xs,ns

)∣cs = c))P (cs = c∣W
′
i−1)P (W

′
i−1)

P (δRDA(xs,1), δRDA(xs,2),⋯, δRDA(xs,NS
),W′

i−1)
(3)

P (Wi = s ∣δRDA,W
′
i−1) = P (cs = 1∣δRDA,W

′
i−1,∑

t∈S

ct = 1) (4)

=
P (cs = 1∣δRDA(xs),W

′
i−1)/P (cs = 0∣δRDA(xs),W

′
i−1)

∑t∈S P (ct = 1∣δRDA(xt),W′
i−1)/P (ct = 0∣δRDA(xt),W′

i−1)
(5)

normalized accordingly.2

In this study, a 6-gram model that is trained using a one-million-
sentence (210M character) sample of the NY Times portion of
the English Gigaword corpus. Corpus normalization and smoothing
methods are described in [8]. Most importantly for this work, the
corpus was case normalized, and Witten-Bell smoothing was used
for regularization [15].

D. Joint target decision

The evidence obtained from EEG and the language model is
used collaboratively to make a more informative symbol decision.
For each epoch and a number of sequences shown, NS , a decision
will be made using the previously written symbols and EEG classi-
fication scores corresponding to NS sequences. Let δRDA(xs,ns

)
be the corresponding posterior ratio scores obtained from RDA
for letter s ∈ S, where ns ∈ {1,2,⋯,NS}. Then the posterior
probability of letter s to be in class c given the classification scores
for letter s trials in each sequence and the previous letters is given
in (2), where cs is the candidate class label of letter s , nLM is the
order of the language model, W′

i−1 = [W
′
i−1,W

′
i−2,⋯,W

′
i−nLM+1

]
and δRDA(xs) = [δRDA(xs,1), δRDA(xs,2),⋯, δRDA(xs,NS

)]. If we
further assume that the scores obtained from RDA for the stimuli
corresponding to the current letter and previously written letters
are conditionally independent given class label, i.e δRDA(xs) �
W
′
i−1 ∣c, and the RDA scores corresponding to EEG responses

for different trials of the same letter in different sequences are
conditionally independent given the class label, using Bayes’ The-
orem multiple times, the posterior probability becomes (3). The
conditional probability density functions of RDA scores given the
class labels, P (δRDA(xs,ns

))∣cs = c), are estimated using kernel
density estimation on the scores of training data, using a Gaussian
kernel whose bandwidth is selected using Silverman’s rule of thumb
that assumes the underlying density has the same average curvature
with a matching-variance normal distribution [16].

Finally, while making our decisions we assume that there is
exactly one target symbol in an epoch, which is reasonable since
the user is expected to look for only one target symbol, and class
labels for different symbols are independent given all the evidence.
The posterior probability of the symbol is given as (4) where
δRDA = {δRDA(xs) ∶ ∀s ∈ S}. If P (cs = 1∣δRDA(xs),W

′
i−1) ≠ 1

∀s ∈ S, after using our assumptions and Bayes’ Theorem we obtain
(4). Correspondingly, the most likely symbol is

Ŵi = argmax
s∈S

P (Wi = s ∣δRDA,W
′
i−1).

2The symbol selection accuracy of our current prototype is around
85%−95% for various subjects, therefore a deletion probability of 10% is
reasonable.

In real-time typing, at the end of each sequence (a presentation of
candidate symbols via RSVP) P (Wi = Ŵi∣δRDA,W

′
i−1) is used

as the confidence of selecting the target symbol correctly, which
gives us a stopping criterion for the epoch and allows us to have
variable number of sequences for each typed symbol. In this study,
the confidence threshold is set as 0.9, i.e when the accumulated
conditional probability of the most likely symbol exceeds 0.9, the
epoch is stopped and that symbol is typed. Using the maximum
value in a probability mass function as the measure of certainty
corresponds to utilizing Renyi’s order-infinity entropy definition as
the measure of uncertainty in the decision we make. One could use
other definitions of entropy to measure uncertainty/certainty in the
current decision.

III. EXPERIMENTS AND RESULTS

The EEG signals are recorded using a g.USBamp biosignal
amplifier using active g.Butterfly and g.Ladybird electrodes with
cap application from G.Tec (Graz, Austria) at 256 Hz. The EEG
channels used were O1, O2, F3, F4, FZ, FC1, FC2, CZ, P1, P2, C1,
C2, CP3 and CP4 according to International 10/20 system. Signals
were filtered by nonlinear-phase 0.5-60 Hz bandpass filter and 60
Hz notch filter (G.tec’s built-in design), afterwards signals filtered
further by 1.5-42 Hz linear-phase bandpass filter (our design). The
filtered signals were downsampled to 128Hz. For each channel,
stimulus-onset-locked time windows of [0,500)ms following each
image onset was taken as the stimulus response.

We conducted several typing experiments in which two healthy
subjects and one locked-in subject typed some sentences using the
proposed system acting in real-time followed by a short training
session with predeclared targets consisting of 50 epochs with 3
sequences each, i.e 150 sequences of symbols. During the typing
tests, subjects were given freedom to type what they want. However
they were asked not to change the text they initially planned and
to correct all the mistakes using the backspace symbol. For the
classification, the effect of language modeling was also decreased
by taking the square root of corresponding conditional probabilities
to make the symbols more balanced. The inter-stimuli interval had
been selected to be 150 ms, however it was increased to 400 ms
due to the uncomfortable feeling of some of the subjects. During
the typing session, each epoch was upper bounded to 6 sequences,
which was decreased to 2 as the preference of the locked-in subject.

Typing performance is quantified by the number of sequences
required to successfully type a desired symbol - including all errors
and deletions until the correct desired symbol is achieved. All
subjects wrote two short phrases in two sessions in two separate
days. For the first healthy subject (HS1), whom inter-stimulus
interval was 150 ms, the training session data from the first day
was used to train the EEG classifier of the second day as well.

647



The typing performances of that subject are given in Fig. 2 and the
average number of sequences needed per symbol were 2.93 and
1.58, respectively.3 The typing performances of the second healthy
subject (HS2), whom inter-stimulus interval was 400 ms, are given
in Fig. 3 and the average number of sequences needed per symbol
were 1.4 and 3.06, respectively. The locked-in subject successfully
wrote HELLO THERE PEOP and THIS IS FAMILY , and aver-
age number of sequences needed per symbol were 6.12 and 3.69,
respectively 4.
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Fig. 2. HS1 number of sequences used to type each symbol.
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Fig. 3. HS2 number of sequences used to type each symbol.

IV. DISCUSSION

In this paper, we presented the description of the first RSVP
Keyboard prototype and some initial results from its real-time
operations. Our experience had been that symbol selection accuracy
can go up to around 95% for healthy subjects and around 85%
for locked-in subjects (based on a few examples each). Training
of subjects, especially those who are locked-in, to use the system
effectively has been determined to be an unexpected major chal-
lenge. Although not discussed in this paper, we have identified that
visual feedback about EEG-classifier activity during BCI calibration
helps subjects greatly in adjusting their mental activity to help
achieve better accuracy collaboratively with the system. The RSVP
Keyboard uses a visual stimulus presentation paradigm that does
not require precise gaze control - a capability that is not present in
many patients with locked-in syndrome.

Both off-line and on-line results indicate that symbols that occur
later in a word can be selected with fewer stimulus presentations
(sequences). This demonstrates that the language model evidence
is particularly useful for these symbols - once the first few letters
are typed, the remaining letters in the word become highly pre-
dictable using a rudimentary language model and this helps EEG
classification tremendously.

3Here, 1.00 would be the minimum possible, corresponding to single-trial
typing of the desired text.

4The exact number of sequences per symbol was not recorded, however
the total number of sequences used was extracted from the triggers recorded.

In future revisions of the RSVP Keyboard, we are contemplating
the incorporation of probabilistic word completion in the RSVP
paradigm (no drop down menus as in typical commercial systems,
but instead a tight coupling with the RSVP Keyboard concept).
We are also contemplating the optimization of presented sequences
and saving time by selecting a subset of likely symbols in each
sequence. All decisions will have to be made probabilistically in
order to minimize expected time to type a symbol.
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