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Abstract— The state of brain and its rapid transition from 
one state to the other is responsible for various activities 
and cognitive functions. These brain states are the result of 
balanced coordination between integrating and 
segregating activities of different lobes through rhythmic 
oscillations. Such coordination has been studied in recent 
times through synchronization of EEG signals generated 
from different lobes. In this paper, the authors have 
considered Synchronization Likelihood (SL) to measure 
the synchronization or integration between the lobes. The 
synchronization information is stored in SL matrix and the 
principal components of an SL matrix have been used to 
represent the state of brain at any instant. Finally, the time 
series of weight vectors corresponding to the principal 
components of SL matrices at each time point has been 
used to classify different states of brain at different stages 
of a sleep deprived experiment.
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I. INTRODUCTION 

EEG oscillations are basic means of communication 
between various cortical areas. The nature of oscillations in 
different frequency bands is related to various tasks and 
performances. For example, the alpha rhythm is related to 
memory performance [1]. Moreover, different types of 
synchronization between two or more areas of brain have been 
observed during different types of activities [2].  For example, 
a significant higher level of de-synchronization is reported 
during complex and difficult task than less complex and easy 
task [1]. During mental activities different neuronal networks 
start to oscillate at different frequencies, whereas synchronous 
oscillations of large cell assemblies has been observed during 
resting state or functional inhibition. It is true for both motor 
and cognitive types of tasks [1]. From the above facts it is 
envisaged that a detail study of synchronization of EEG 
signals from various locations might give an insight into 
various brain states responsible for different cognitive 
functions. 

Each brain state is a function of corresponding frequency 
contents of the generated signals. Hence, the nature of 
synchronization may be different at different frequency bands. 
It is reported in the literature that the alpha band is more 

sensitive to the variation of consciousness or alertness of 
human subjects [1], [3]. For this reason, the authors have 
considered alpha band for classification of level of fatigue and 
sleepiness in this work. The alpha band signal has been 
extracted from the original signal using discrete wavelet 
transform (DWT) [4]. 

Various techniques have been suggested in the literature to 
find the interaction between signals from different electrodes 
such as correlation [5], phase synchronization [6], 
synchronization likelihood [7, 8] etc. The functional 
relationship between two sections of human brain has been 
established to be non-linear by nature. Therefore, linear 
measures like correlation or coherence may not be adequate 
for characterizing the interdependency between different areas 
of human brain. Phase synchronization considers only the 
distribution of the phase difference between two time series. 
But it does not consider the amplitude information and is 
suitable only for oscillatory systems [8]. In this work, the 
interaction between the different electrodes has been 
quantified using a nonlinear measure known as 
Synchronization Likelihood (SL) which has been effectively 
used in past to study non-stationary signals like EEG [9]. 

The proposed method (termed as PCSLM) computes the 
SL between signals from different lobes, finds the principal 
components of these SL matrices, computes the weight vectors 
by projecting the SL matrices along each principal component, 
and classifies the brain states using HMM [10] and the time 
series of weight vectors as observation sequence. Also, the 
accuracy in classification of the proposed method has been 
compared with other observation sequences (actual time 
series, time series of Autoregressive (AR) parameters, time 
series of principal components of segmented EEG signals).    

The proposed method has been applied for the 
classification of brain states at various stages of a sleep 
deprived experiment. It can also be applied for task 
classification or detection of diseases such as Alzheimer’s, 
Seizure etc.    

The paper has been organized as follows:  

Section II describes the experimental method and data 
collection. In section III, the methodology of analysis has been 
described. Section IV describes the results and discussions.  
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II. EXPERIMENT

The proposed method has been applied to classify different 
stages of a sleep deprived experiment. The experiment was 
conducted on 12 healthy male subjects and continued for 36 
hours with sleep deprivation. During the experiment, fatigue 
has been induced in the subjects through various tasks. The 
fatigue and sleepiness were increased gradually though it was 
affected by circadian rhythm at various stages. 

A. Experiment and data collection 

Subjects 
Twelve healthy male subjects in the age group of 20-35 

years were chosen for the experiment. All the subjects were 
reported to have no sleep related disorders. Their fitness and 
health were checked thoroughly by a medical practitioner 
before the selection as well as during the experiment. The 
selected subjects were advised to maintain a prescribed routine 
during 48 hours prior to the experiment. They were restricted 
against consuming any type of medicine or stimulus like 
alcohol, tea or coffee during the experiment. The experiment 
was performed in compliance with the relevant laws and 
institutional guidelines. The subjects also provided written 
consent prior to the experiment.  

Procedure   
The experiment was conducted in four temperature 

controlled laboratories in two sessions with 6 subjects in each 
session. The entire experiment was divided into a number of 
identical stages.  Each stage started with condition monitoring 
of the subjects by a medical practitioner. After the subject was 
declared fit, he was asked to perform some predefined tasks. 
These are: physical exercise on a tread mill for 2-5 minutes to 
generate physical fatigue; simulated driving for about 30 
minutes to generate physical, visual, and mental fatigue; 
auditory and visual tasks for 15 minutes to generate mental 
and visual fatigue; finally the computerized game related to 
driving for about 20 minutes. A single stage of experiment 
lasted for about 3 hours. Between two stages they were 
allowed to read books or newspapers in order to keep them 
awake. The subjects were monitored by CCTV camera during 
the experiment. The stages were continued for 36 hours (12-
stages) when most subjects complained of extreme fatigue.  
EEG Recording 

EEG data were recorded at the beginning of the 
experiment and at the final phase of each stage. Three sets of 
EEG were recorded in each stage, i.e. 3 minutes record during 
the computer game, 2 minutes data after the game with open 
eyes and no activity condition, and then 2 minutes data with 
closed eyes and no activity condition. Total nineteen scalp 
electrodes (Ag/AgCl, RMS, India) were used in addition to 
reference and ground to collect the signals from locations Fp1, 
Fp2, F3, F4, F7, F8, Fz, T3, T4, T5, T6, C3, C4, Cz, P3, P4, 
Pz, O1, and O2 following the international 10–20 system. All 
these EEG activity were recorded with respect to the forehead 
as reference. In this study, the 3 minute EEG recording during 
computer game have been chosen for the proposed analysis. 

III. METHODOLOGY

The process involves extraction of alpha band from 
recorded signal using DWT, computation of SL from alpha 
band signal, and the classification of the experiment stages 
using principal components of SL matrices and HMM. The 
detailed methodology is explained in the following sections. 

A. Signal preprocessing and decomposition using Discrete 
Wavelet Transform 

The raw EEG was filtered by a band pass FIR filter with 
cutoff frequencies of 0.5Hz and 30Hz followed by extraction 
of alpha band using Discrete Wavelet Transform (DWT). The 
advantage of using DWT is that the non-stationary nature 
inherent in the signal is preserved [4]. The detail component at 
level-2 of DWT represents the alpha band (8-15Hz). 
B. Computation of Synchronization Likelihood (SL) 

Step1: Let, ,k ix  where 1, 2, ....., Tk M=  and 

1, 2,...., Ti N= , represent TM  simultaneously recorded EEG 

time series of length TN . From each time series we form a 

state vector ,k ix which is represented as  

         
, , , , 2 , ( 1)( , , ,....., ),     

                    1,2,.... ( 1)

k i k i k i l k i l k i m l

T

x x x x

i N m l

+ + + −=

= − −

x
  

        (1)  

where, l is the lag and m  is known as embedding dimension 
[7], [11]. These vectors form an m-dimensional phase space 

known as lagged phase space. Thus, each vector ,k ix  acts as a 

point in the lagged phase space.
In other words from each EEG record we construct a 

matrix whose rows span the lagged phase space as:  
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Step2: In each time series we define two windows 1w  and 

2w  such that 1 2 Tw w N<< << . For each time series k  and 

each time instant i , we compute the Euclidean distance 

between points ,k ix  and ,k jx  , 1 2

2 2
< − <w w

i j , in the 

lagged phase space and the probability ,k iP ε  that the distance 

is less than ε . Now for each k and i we find the critical 

distance ,k iε such that the probability ,k iP ε  is equal to a pre-

specified value refp . 

Step3: For each time series k  and each time instant i, we 

define a vector ,k iY  that contains all the points whose 

distance from point ,k ix  is less than the distance ,k iε in 
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lagged phase space. Now the Synchronization likelihood 

between two time series 1,k ix  and 2,k ix  , ( 1, 2,...., Ti N= ) at 

instant i  is defined as the ratio of number of common 
neighbors of two time series at instant i to the total number of 
points within the specified distance in each time series, i.e.  

                   

1, 2,1, 2

1,

( )

( )

Y Y

Y
k i k ik k

i

k i

SL =              (3) 

In this work, the signal was recorded simultaneously from 19 
different electrodes ( 19TM = ). The Synchronization 

Likelihood at instant i between all the electrodes has been 
stored in a 19 × 19 symmetric matrix called SL matrix (SLM). 

A time series of SLMs  has been obtain by shifting the 

analysis window to form a new state vector ,k i s+x at a distance 

s . A very small value of s is computationally difficult, and a 
large value of s may ignore some valuable information. 
Literature suggests that a window shift (s) less than w1 may be 
a good choice [8].   
C. Computation of Principal components of Synchronization 

Likelihood Matrices  

The principal components of the SLMs are constructed 
using the Principal Component Analysis (PCA) [12]. The 
detail methodology of computing principal components is 
explained here. 

Training data and computation of principal eigenvectors 

A training dataset is formed by including 50 SLMs from 
each subject at each stage. Let the training set of SLMs be 

, 1, 2,3,....,i Si M= each of dimension T TM M×
( 19TM = ). First, the upper triangular elements of each SLM 

is converted into a vector , 1,2,3,....,i Si M=a  of dimension 

1L ×  where ( 1) / 2T TL M M= − . Thus each SLM can now 

be considered as a point in L  dimensional space. This set of 
vectors is then subjected to PCA which seeks a set of L

orthonormal vectors , 1,2,3,....,ui i L=  and their associated 

eigen values , 1,2,3,....,i i Lλ =  which best describe the 

distribution of the data. The vectors iu  and the scalars iλ  are 

the eigen vectors and eigen values of the covariance 

matrix ( )C aaTE= . From these eigenvectors, k  principal 

eigenvectors have been selected. This completes the Training 
part of the algorithm. These principal eigenvectors form a new 
space known as SL space. 

Computation of weights 

The input SLM t is then converted into vector at  of 

dimension 1L ×  and is projected on to the SL space to find 

the weights ,  1:u aT
i i tw i k= = . The weights form a weight 

vector 1 2[   .... ]kw w w=  which describes the component of 

input SLM along each principal direction.  

The time series of weight vectors obtained from the time 
series of SLMs has been used for classification of fatigue and 
sleepiness stages using HMM. 

D. Classification using Hidden Markov Model (HMM) 

HMM is a probabilistic method for modeling time series 
data [10]. It is successfully used earlier in classifying EEG 
time series in various applications [13]. It assumes a number 
of discrete hidden states, discrete or continuous (real) valued 
observation and the probability of transition from one state to 
other. In this work continuous HMMs has been applied 
because the signals and the features are real valued 
observations. For continuous or real valued observation an 
HMM can be defined by the following elements [10]: 

i. Number of hidden states in the model ( HN ) denoted 

as 1 2{ , ,...., }
HNS S S S=

ii. State transition probability distribution 

  1{ }  [ ],    1 ,ij ij t j t i HA a where a P q S q S i j N+= = = = ≤ ≤

iii. Emission probability distribution function ( )Y t tf y q
iv. Initial state distribution  

1{ }  [ ],    1i i i Hwhere P q S i Nπ π π= = = ≤ ≤

The parameters of HMM were learnt using Baum-Welch 
algorithm. The emission distribution function is considered as 
the mixture of two Gaussians for each hidden state. The 
classification using HMM typically has following steps.  

i. Initialization of state transition probability A  and 
initial state distribution π . 

ii. Training of HMM for each class 
iii. Computation of log-likelihood that each model gives 

to the test signal 
iv. Selection of the most likely model 

IV. RESULTS AND DISCUSSIONS

The analysis has been carried out on 3 minute EEG records 
(during the computer game) of 12 subjects at 11 stages. The 
synchronization of alpha band signal from different cortical 
areas has been computed via SL. The mean synchronization 
between alpha bands of 19 electrodes at various stages of the 
experiment is shown by SLMs in Fig.1. 

Fifty randomly selected SLMs from each stage and from 
each subject (i.e. a total of 6600 matrices) have been used as 
training set for PCA. The principal components of SLMs are 
obtained as explained in section IIIC. Twelve principal 
components ( 12k = ) were selected (as shown in Fig. 2) 
based on a minimum of 90% information content. 

For further processing, the SL matrices of all stages are 
projected on to the above principal components to find the 
weight vectors indicating the contribution of each principal 
component. Thus, the synchronization between different lobes 
at any instant is now represented as a weight vector. The time 
series of these weight vectors at different time points has been 
used as observation sequence for classification of different 
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stages of fatigue using HMM.  

Fig.1: Mean synchronization likelihood matrices of 12 
subjects at 11 stages in alpha band 

Fig.2: Twelve principal components of SL matrices  
The method of classification of SLMs using HMM has 

already been discussed in section IIID. The method has been 
applied to classify 2 & 3 stages of sleep deprived experiment. 
The classification accuracy (percentage of true classification) 
of the proposed method has been compared with three other 
methods. All the methods use HMM for classification, but use 
different features as observation sequence. These are  
i. Actual time series  
ii. Time series of AR parameters  
iii. Time series of principal components  of segmented 

EEG (PCEEG) 
iv. Proposed: Time series of weights along principal 

components of SL matrices (PCSLM) 
The accuracy in classifying various numbers of stages is 

given in Table 1. It can be seen that the accuracy is maximum 
when actual time series is considered as observation sequence. 

The reason may be the large number of data which helps in 
better training of the HMM. But it is not always possible to 
work with the time series as it takes longer computation time. 
Among the feature based classification methods the proposed 
method gives maximum accuracy in classifying 2 and 3 stages 
of fatigue and sleepiness during the experiment. 

Table 1. Accuracy in classifying different stages based on 
different observation sequences. 

 Accuracy (%) 

Stages 
Time 
Series 

AR PCEEG  
PCSLM 

(Proposed) 
2 (3, 9) 87.50 68.75 65.00 70.41 

3 (3, 6, 9) 74.44 49.16 56.25 56.80 

V. CONCLUSIONS

In this experimental study the variation of synchronization 
has been measured using SL due to its superiority in analyzing 
non-stationary signals. The SL matrix at any instant captures 
the interaction of different lobes. At different time points it 
shows the variation of such interaction. This gives more 
insight of change in brain states. Moreover, the principal 
components of these SL matrices help in reducing the 
complexity of computation.  
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