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ABSTRACT
This paper introduces a method to automatically detect Au-

toPEEP (pulmonary distension), a frequent asynchrony in the

patient-ventilator interface. The detection algorithm is devel-

oped based on a robust non-parametric hypothesis testing that

requires no prior information on the distribution of the signal.

The experiment results have shown that the proposed algo-

rithm provide relevant AutoPEEP detection on both simulated

and real data.

Index Terms— Patient-ventilator interaction, AutoPEEP

detection, Signal Norm Testing

1. INTRODUCTION

The objective of mechanical (or artificial) ventilation is to

assist or to replace the spontaneous breathing of the patient

by a ventilator when the patient breathing becomes inefficient

or, in some cases, absent. Mechanical ventilation is routinely

used in emergency ward, operating room, or intensive care

unit. It can also be used at home or in nursing/rehabilitation

institutions, paricularly for patients who suffer from chronic

illness and whose spontaneous breathing is insufficient. Un-

fortunately, imperfect patient-ventilator interaction is very

common. It has been shown that patient-ventilator mismatch-

ing is very frequently exhibited in both intubated patients

receiving pressure support ventilation [1] and patients under-

going non-invasive ventilation [2]. Among these anomalies,

pulmonary distension — i.e. AutoPEEP for intrinsic posi-
tive end-expiratory pressure — and patient-ventilator asyn-

chrony are very frequent, but are not yet detected on currently

used ventilators. Such imperfect interaction may generate

incomplete ventilatory assistance, or even increased respi-

ratory effort, thus generating deleterious adverse events and

decreased prognosis. Therefore, the detection — possibly

followed by an appropriate correction — of anomalies in the

patient-ventilator interface is necessary.

Study in [3] has shown that the curves (flow, airway

pressure and air volume) available on most of the recent

mechanical ventilators provide much information to analyze

the patient-ventilator interface. By visually monitoring these

curves, patient-ventilator mismatching can be observed and

detected during the assisted ventilation. Using the same in-

puts, automatic anomaly detection could also be investigated.

In [4], a detection algorithm has been embedded in a ventila-

tor system and has been reported to be successful in detecting

ineffective triggering and double triggering, two major types

of patient-ventilator asynchrony. Unfortunately, to the best

of our knowledge, other types of asynchrony and anomaly,

including AutoPEEP, have not been adequately considered.

In this paper, the AutoPEEP detection is considered. The

detection is performed by Signal Norm Testing (SNT) on

the flow signal captured from the patient-ventilator interface.

SNT involves testing the norm of a signal observed in noisy

conditions with respect to a certain tolerance fixed by users

based on their know-how and/or experience of the domain.

The paper is organized as follows. Section 2 will present the

AutoPEEP detection based on SNT. The performance assess-

ment will be carried out in Section 3 with the experiment

results reported in the same Section. Finally, Section 4 will

bring the overall conclusion and perspectives.

2. AUTOPEEP DETECTION USING SNT

2.1. Principle

AutoPEEP can be visually observed and detected through

flow signal. Figure 1 shows an example of the flow signal

with AutoPEEP captured during mechanical ventilation on

real patient. Let θ(t) be the clean flow signal. AutoPEEP

can be regarded as the non-return of the flow signal at the

end of each expiratory phase to the null value — i.e. the

hypothesis θ(te) �= 0, where te is the end-expiration instant

of the considered breath. By defining some tolerance τ > 0,

the AutoPEEP can be considered as the event |θ(te)| > τ . In

practice, τ is specified by the clinician. Its value is usually

derived from his/her expertise of the domain. Other techni-

cal factors should also be taken into account, including: the

flow sensor precision, the noise level, etc. Multiple values

of τ could also be employed to provide a semi-quantitative

evaluation of the persisted AutoPEEP on patient.

Given observation y in additive gaussian noise x — i.e.
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Fig. 1: Flow signal from real patient

y = θ + x, where θ ≡ θ(te) and x ∼ N (0, σ2) — the Au-

toPEEP detection resorts to testing the hypothesis h0 : |θ| >
τ against the alternative one h1 : |θ| ≤ τ . This is a SNT prob-

lem in the sense given by [5]. In the sequel, a test T is any

measurable map of R into {0, 1}. The value returned by T
indicates the index of the accepted hypothesis. As in [6], the

power function of test T is defined as the probability that T
rejects the null hypothesis h0, regardless of which hypothesis

holds, i.e.

βθ(T ) = P[T (y) = 1]. (1)

The size of T for testing h0 : |θ| ≤ τ is defined as the least

upper bound for the probability of false-alarm, i.e.

α(T ) = sup
|θ|≤τ

βθ(T ) (2)

and its power is the value of βθ(T ) for θ such that |θ| > τ
— in other words, the detection probability. In practice, it

is expected to maximize the power of T while restricting the

false-alarm rate below some level γ (0 < γ < 1). This value

γ is specified by the clinician with respect to the acceptable

number of false-alarms during a period of time. For instance,

a typical value of γ = 0.01 corresponds to a maximum of

one false-alarm per 5 minutes with the usual frequency of 20
[breaths/min]. The UMP (Uniformly Most Powerful) test for

the problem does not exist (cf. [6]). Moreover, the problem is

invariant to any sign change in θ. Therefore, it is natural that

the test itself should also be invariant to sign changes — that

is, T should be an even function. It follows from [5] that, the

UMP test among those even tests with size γ is:

Tσλγ(
τ
σ )(y) =

{
1 if |y| ≥ σλγ(

τ
σ )

0 if |y| < σλγ(
τ
σ )

(3)

in which λγ(ρ) is the unique solution in η to the equation

1 − [Φ(η − ρ) − Φ(−η − ρ)] = γ, where Φ(.) is the cumu-

lative distribution of any standard normal distributed random

variable. Additionally, it is UMPU (UMP unbiased) [5]. This

thresholding test is used for the detection of AutoPEEP, one

of the most frequent anomalies exhibited during assisted me-

chanical ventilation.

2.2. Automatic detection of AutoPEEP

Although the definition of AutoPEEP is based solely on the

final sample of the expiratory phase of each breath, it is ex-

pected that taking multiple samples into account would im-

prove the detection performance. Let Y be the observation

vector containing the last L samples of the expiratory phase

of the considered breath. Y is modeled as: Y = Θ + X,

where Θ =
[
θ(te − L+ 1) ... θ(te − 1) θ(te)

]T
is the

flow signal vector and X ∼ N (0, σ2IL) is additive gaussian

noise. Vector Θ can be factorized as: Θ = pθ with θ ≡ θ(te)

as above and p =
[
p1 p2 ... pL

]T
is the waveform vec-

tor that corresponds to the form of the flow signal at the end

of the expiratory phase. It should be noted that pL = 1.

To aggregate L observed samples into a unique decision

for the considered breath, Y is projected onto the direction

generated by p. We thus have: z = θ + u where z =
pTY/‖p‖2, u = pTX/‖p‖2 and ‖p‖2 = pTp is the L2

norm of waveform vector p. Noise u follows normal distri-

bution with zero mean and variance σ2
u = σ2/‖p‖2. The

problem is the same as before except that the noise level is

reduced. The detection is thus:

d̂ =

{
1 (AutoPEEP) if |z| > σuλγ(

τ
σu

)

0 (NON-AutoPEEP) if |z| ≤ σuλγ(
τ
σu

)
(4)

where λγ(.) is calculated by the same way as before. By re-

ducing the noise standard deviation, the detection probability

is improved while the false-alarm rate is still limited to the

specified level γ.

2.3. Parameter estimation

As long as it is concerned, the waveform vector p can be cal-

culated based on the first Nref breaths right after a verifica-

tion/tuning session of clinician. These Nref breaths are con-

sidered as the reference for the estimation. For breath k, the

estimated waveform vector p̂k can be computed from the re-

gression of the flow signal at the end of the expiratory phase.

Indeed, during an expiratory phase, the flow signal form is de-

termined by the passive action of the patient lung. Due to the

resistance of the air ways and the elasticity of the lung, the

flow signal in the expiratory phase can then be modeled by

f(t) = C − φe−μt with φ > 0, μ > 0. This model is used to

estimate p using nonlinear robust regression method. Given

a set of n data points {(ti, yi), i = 1..n} where yi = y(ti) is

the observation at instant ti, the non-linear robust regression

aims at solving the least squares problem:

(C, φ, μ)∗ = argmin
C,φ,μ

n∑
i=1

wi

[
yi − (C − φe−μti)

]2
(5)

where the introduction of weight vector [w1, w2, .., wn]
makes it possible to reduce the influence of outliers onto

the final result. Given the regression at the end of the expi-

ratory phase, the last L values are used to calculate for the

considered breath:

p̂k = [ŷ(te − L+ 1), ŷ(te − L+ 2), ..., ŷ(te)]
T /ŷ(te) (6)
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The estimate for p can then be computed from the Nref ref-

erenced breaths as: p̂ = 1
Nref

∑Nref

k=1 p̂k. Since f(t) is strictly

increasing and the flow signal is negative in the expiratory

phase, ‖p̂‖2 > L and ‖p̂‖2 ≈ L if and only if the flow sig-

nal is almost constant at the end of the expiratory phase, i.e.

p̂ ≈ [1, 1, ..., 1]T .

In practice, noise is unknown. To make it complete, an

estimation of noise standard deviation σ is required. Stud-

ies on non-parametric estimation based on Wavelet Shrinkage

has shown that most of the wavelet coefficients obtained from

the first level wavelet decomposition of a regular signal have

very small amplitude. Only a small number of these wavelet

coefficients, which pertain to the signal, are of higher ampli-

tude [7]. This fact allows the use of robust estimators on the

wavelet coefficients to provide a noise estimation. As in [7],

we consider the MAD (median absolute deviation) [8, 9] es-

timator. Let c1, c2, ...cN be the wavelet coefficients obtained

from the first level discrete wavelet decomposition of an N -

sample segment of the flow signal yn, the estimate σ̂MAD of

σ is provided by: σ̂MAD = b × medi|ci − medjcj | where

b ≈ 1.4826.

3. RESULTS

3.1. Simulations

To assess the detection performance of the proposed algo-

rithm, the flow signal was synthesized on computer. For each

breath, L end-expiration samples were generated. Vector p
was supposed to be known and set to p = [1, 1, ..., 1]T , which

corresponds to the worst case where ‖p‖2 = L with regard

to noise level σu. The tolerance was set to τ = 2[l/min] and

the values of θ were randomly and uniformly generated be-

tween 0 and − τ
1−π , where π is the proportion of positive

cases (AutoPEEP). Since the false-alarm rate PFA is always

restricted to the specified value γ, it is more meaningful to

plot the detection rate PD versus different values of π, namely

the detection curve, than to present the usual ROC (Receiver

Operating Curve). Figure 2 shows detection curves for differ-

ent noise levels and different values of L. The detection rate

is significantly improved when more samples are aggregated.

Of course, the lower the noise level, the better the detection.

3.2. Experiment results

The proposed AutoPEEP detection was also tested in a more

realistic setting in which the interface between a ventilator

and a model lung was established. In these experiments, the

IngMar Medical model lung ASL5000 was used. Thirteen set

of parameters (cf. Table 1) for both the lung emulator and the

ventilator, which correspond to various practical situations,

were carried out. The tolerance τ = 2 [l/min] was employed

again. With respect to this tolerance, among the 13 settings, 7

cases were reported as AutoPEEP and the other 6 cases were

labeled as NON-AutoPEEP thanks to an independent clinical

(a) Regression at End-Expirations

(b) AutoPEEP Detection

Fig. 3: Detection results on real patient data

analysis from hospital Cavale Blanche, Brest, France. The de-

tection was performed on the basis of the flow signal captured

by the sensor integrated in the ASL5000 model lung. For each

case, about 1.5 minute of the signal flow was recorded. The

corresponding number of breaths varied from 13 to 34, de-

pending on the setting. Level γ was set to 0.01. The detection

results are reported in Table 1. All the 13 cases were success-

fully detected by the proposed method. Moreover, in each

case, all the breaths were precisely classified. No detection

error has been found among the 323 breaths analyzed.

For further evaluation, experiments on real patient were

carried out at hospital Cavale Blanche, Brest, France. For

each patient assisted by mechanical ventilation, the signal was

recorded during several hours. Figure 3 presents a typical

case with the regression at end-expiration and the correspond-

ing detection. It can be seen that the detection algorithm can

precisely reveal the true label for all the breaths. Due to the

huge amount of data to be clinically analyzed, a more detailed

quantitative evaluation on real patients is in progress.

4. CONCLUSION

In this paper, the automatic AutoPEEP detection has been in-

troduced. The experiment results have shown that the pro-

posed algorithm is capable of precisely detecting AutoPEEP

based solely on the flow signal, which is available in most of

the currently used ventilators. Although the algorithm is de-

veloped for AutoPEEP, it can possibly be extended to the de-

tection of other types of asynchrony, which can be regarded as

deviations of the observed signal with respect to some refer-

ence. The approach is very general and could be used in many

applications, including fault detection and structural health

monitoring. It is also worth mentioning that, in this work,

each breath is considered independently. Since AutoPEEP,

once present, usually remains for a certain number of breaths,
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(a) τ/σ = 0 dB
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(b) τ/σ = 10 dB
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(c) τ/σ = 20 dB

Fig. 2: Simulations with N = 10000 breaths, tolerance τ = 2[l/min] and level γ = 0.01

Table 1: Detection results on emulated flow data

Id
Parameters

True Label
Number of

breaths
Detection by SNT c

Ventilator a Model lung b AutoPEEP Non Overall Label

1 PEP=0, V=500, f=15, P=0, I:E=1:2 C=80, R=5 Non 21 0 21 Non
2 PEP=0, V=500, f=15, P=0, I:E=1:2 C=30, R=5 Non 20 0 20 Non
3 PEP=0, V=500, f=25, P=0, I:E=1:2 C=80, R=5 AutoPEEP 33 33 0 AutoPEEP
4 PEP=0, V=500, f=25, P=0, I:E=1:1 C=80, R=5 AutoPEEP 34 34 0 AutoPEEP
5 PEP=0, V=300, f=20, P=0, I:E=1:2 C=80, R=5 Non 27 0 27 Non
6 PEP=0, V=500, f=12, P=0, I:E=1:2 C=80, R=5 Non 16 0 16 Non
7 PEP=0, V=500, f=20, P=15, I:E=1:3 C=80, R=5 Non 27 0 27 Non
8 PEP=5, V=500, f=20, P=0, I:E=1:3 C=80, R=5 Non 27 0 27 Non
9 PEP=5, V=500, f=20, P=0, I:E=1:2 C=120, R=10 AutoPEEP 27 27 0 AutoPEEP
10 PEP=0, V=700, f=20, P=0, I:E=1:2 C=120, R=10 AutoPEEP 27 27 0 AutoPEEP
11 PEP=0, V=700, f=20, P=0, I:E=1:6 C=120, R=10 AutoPEEP 24 24 0 AutoPEEP
12 PEP=0, V=700, f=20, P=0, I:E=1:1 C=120, R=10 AutoPEEP 27 27 0 AutoPEEP
13 PEP=0, V=700, f=20, P=0, I:E=1:2 C=140, R=25 AutoPEEP 13 13 0 AutoPEEP
a Ventilator parameters include: Positive Expiratory Pressure PEP [cmH2O], air volume Vt [ml], frequency f [breaths/min], pause time

P [%], Inspiratory to expiratory time ratio I:E.
b Model lung parameters include: compliance C [ml/cmH2O] and resistance R [cmH2O/l/s].
c For each of the experiments, the SNT-based AutoPEEP detection provides: the number of breaths detected as AutoPEEP, the number

of breaths detected as NON-AutoPEEP (denoted as Non) and the overall label for the considered setting.

it can be expected that taking multiple consecutive breaths

into account should yield better detection performance. In

this respect, it could be profitable to extend SNT in a sequen-

tial decision framework to deal with such a problem. A com-

plete study of this type will be addressed in future work.
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