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ABSTRACT

We study the problem of accurate automatic classification of fetal
heart rate (FHR) signals using three different classification methods.
FHR time series data are segmented into short (15s) spans of data,
and features are extracted from them. These features include some
established metrics of FHR trends such as acceleration and decel-
eration durations as well as a new set of features derived from the
sequence of beat-to-beat percentage changes of the FHR signals. In
total, we use 10 different features and demonstrate the feasibility
of using them for classifying short segments into one of two suit-
ably defined classes denoted as normal or abnormal. Classification
is achieved using three different methods: support vector machine, a
parametric Bayesian method and a non-parametric Bayesian method
utilizing a neighbour-counting procedure for class-conditional den-
sity estimation. The performances of these methods are demon-
strated on a database of physician-annotated recordings from which
580 short epochs of FHR patterns were extracted.

Index Terms— FHR, classification, Bayesian, ROC

1. INTRODUCTION

Pattern classification in the context of biomedical signals has been
a problem of interest for many years. With the explosive growth
in bioinformatics and biosignal processing research, many novel
feature extraction and classification methods have been developed.
Some example applications include EEG-based brain-computer in-
terfaces [1] and bioinformatics [2]. A wealth of academic resources
may be found for many other related methods and applications.

In this study we consider the problem of automatic or computer-
aided diagnosis of fetal heart rate (FHR) signals. Clinically speak-
ing, visual diagnosis of the FHR signals is of critical importance
when evaluating the status of pregnancy and delivery. This is be-
cause oxygen inadequacy (also termed hypoxia) has a direct effect
on the FHR and a timely detection of possible abnormalities in the
signal can go a long way to prevention of dangers. However, purely
visual assessment of fetal heart rate segments has in the past been
proven to have high intra- and inter observer variability [3]. The
problem has persisted despite the publication of standardized guide-
lines, such as those by the National Institute of Child Health and
Human Development (NICHD) [4], for the interpretation of FHR
patterns. This has led to an alarming increase in the rate of caesarian
sections and unnecessary litigation expenses in even simple cases.

Thus, the development of accurate diagnostic algorithms capa-
ble of automatic classification of FHR patterns is of paramount im-
portance, and several attempts have been made in this direction. A
comprehensive review of such methods has been provided in [5].
The general scheme for classification involves sampling the FHR
time series at a suitable rate, dividing it into appropriately sized seg-
ments, extracting a feature vector for each segment and using this

vector as input to a feature classification system. The extracted fea-
tures may include power spectral density estimates, (e.g.[6]), mor-
phological features such as number of “accelerations” (increases in
FHR), “decelerations” and their corresponding sizes (e.g. [7]), linear
features such as mean and variance of FHR over some time period,
and nonlinear features including approximate or sample entropy [8].
A recent study has focused on the dynamic relationship between the
FHR and the maternal uterine pressure signal, quantifying it as an
impulse response function and using the associated gain and phase
delay as features capable of discriminating between normal and ab-
normal cases [9]. Almost all of these algorithms extract the feature
vector from fairly long segments of FHR data; typically about 10-
20 minutes of data yields one set of features. However, significant
nonstationarities in long data sets may decrease the quality of the
features. This prompted us to try diagnostic algorithms for short
segments of data (here we tried 15s segments) using a new set of
features from the beat-to-beat FHR percentage changes. Our idea is
to use efficient methods for localized detection of patterns and de-
velop a sequence of classifications to characterize the overall class
of long FHR time-series data.

Once feature extraction is implemented, the algorithm must per-
form the training and classification steps. In the current state-of-the
art, support vector machines (SVM’s) [10] seem to be the classi-
fiers of choice when it comes to obtaining discriminating functions,
mainly because of the relative simplicity of the theory, the conve-
nient extension to nonlinear discriminators through the use of the
kernel trick , and high accuracy in several real applications.

Alternatively, one can use the Bayesian approach to classifica-
tion. In the absence of any training data, one assumes a certain
prior probability that a given feature vector belongs to any one of
the classes. Then the training set is used to find the class-conditional
density of feature-vectors. The final posterior probability is found
by taking the product of the class-conditional density and the prior
probabilities. The crux of the method is the estimation of the class-
conditional densities, for which one may assume parametric (typi-
cally Gaussian or mixture Gaussian) or non-parametric forms.

In this paper, we report on the development of classification
methods for short segments of FHR data. This includes develop-
ment of a new set of features that we expect will be able to accu-
rately capture characteristics of possibly dangerous FHR patterns.
For each short segment, this set of features is fed into a classifier
such as SVM or Gaussian Bayesian methods as described above. In
addition we also use a non-parametric method for class-conditional
density estimation (called the “Neighbor Counting” (NC) method)
for accurate classification.

2. PROBLEM FORMULATION

We concentrate for now on binary classification of data (e.g., “Nor-
mal” vs. “Abnormal”) in the supervised case. The FHR signal is
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denoted as hn, where n is the sample number. The features in the
database may be viewed as points in m-dimensional feature-space
and will be denoted as xi; i ∈ {1, 2, . . . , N}, where N is the num-
ber of training vectors. For each xi we have a corresponding true
label yi which can take values from {+1,−1}. Training involves
finding a function f(x) that is able to separate the features in the
two categories with minimum overall cost.

In the following, we describe first the features extracted from
the data, including features from the so-called FHR “return” series.
Then we outline the proposed non-parametric approach to binary
classification via a density estimation method. SVM’s and paramet-
ric Bayesian methods based on Gaussian assumptions are very well
studied and are thus not described here. In the Results section, we
demonstrate that these can be used to classify short segments of data
in an efficient way.

3. DATA AND FEATURES

Our real database consists of 580 short 15-s epochs of fetal heart rate
time series data extracted from clinical recordings of 11 different
subjects. The original 20-min Doppler FHR segments, collected in
the Department of Obstetric/Gynaecology at Stony Brook University
hospital at 4Hz sampling rate, were labeled as normal or abnormal by
independent physicians. Out of these 11 recordings, regions of FHR
patterns were carefully isolated and labeled as such. Each labeled
region was segmented into non-overlapping 15-s epochs. Abnor-
malities may include decelerating heart rate or low variability, and
an epoch was labeled as “abnormal”(the target class, denoted +) if it
had either one or both of these attributes. We note that these criteria
for abnormality are not the only ones used ultimately by physicians,
and future work will include the study of more types of abnormality.

Each epoch was denoised using an algorithm similar to [11].
FHR baseline detection was performed using a median-filtering al-
gorithm. We made no differentiation between recordings taken at
different gestational ages or stages of delivery.

From each 15-s (60 sample) epoch of data denoted h =
[h1, h2, . . . , h60], several different types of features can be ex-
tracted. We focus here on 10 specific features as described in the
sequel.

3.1. Features from raw FHR series

From the raw FHR series, we can extract features to quantify the
average time the FHR decelerates or accelerates. We consider the
following features:

1. Number of FHR samples out of 60, that are above an acceler-
ation threshold ξU .

2. Number of FHR samples out of 60 that are below a decelera-
tion threshold ξL. Both acceleration and deceleration thresh-
olds were set according to the prescribed guidelines set by
NICHD [4].

3. Standard deviation of the FHR series σh.

3.2. Features from the FHR return series

The return series rn is computed as a time series of sample-to-
sample percentage changes in the FHR signal hn. In order to
standardize the range of the possible rn signals, we first center the
original signal hn around a reasonable constant FHR value (here
140 bpm) and then calculate the baseline (bn) of the centered signal

(ĥn). The “unbiased” FHR signal h̃n is then obtained by subtracting
bn from hn. The return series is then obtained for h̃n according to:

rn =
h̃n − h̃n−1

h̃n

. (1)

From the return series r = [r1, . . . , r60], we can obtain several fea-
tures. In a separate, as yet unpublished study, we explored the class-
separation performance of several different types of features when
used individually. These included several statistical moments (since
they can quantify the rn probability distributions) as well as nonlin-
ear features which have been used previously in adult heart rate vari-
ability studies. Hypothesis testing was done via the Kolmogorov-
Smirnov test. The statistics for the following 6 features were found
to be significantly different for the two classes at the p = 0.05 level:

1. Total return Sr =
60∑

n=1

rn.

2. Variance of return data σ2
r .

3. Skewness of return data γr = (E(r − μr)
3)/σ3

r .

4. Kurtosis of return data Kr = (E(r − μr)
4)/σ4

r .

5. Runs ratio of return data ρr . This is the number of distinct
runs of consecutive increases or decreases of the return series
from zero. For instance, the sequence {+,+,−,−,+,−,+}
has five runs. A higher number of runs indicates higher vari-
ability.

6. Shannon Entropy of return data εr . This feature summarizes
the complexity in the return series. We find the histogram
of the sequence of rn’s in Nb bins, with frequency in bin k
denoted pk, and then compute (Nb = 16 in our implementa-
tion):

εr = −
Nb∑
k=1

ln(pk/60)pk/60. (2)

7. Turning Point Ratio of return data τr: A sample zk from any
given sequence {z1, . . . , zN} is denoted a turning point if the
samples zk−1 and zk+1 are either both greater than or both
smaller than zk. The turning point ratio τz is then defined
as the ratio of the number of turning points to the length of
the sequence N [12]. To obtain τr we first map the rn data
so that for a positive (negative) rn, r∗n = +1(−1). Then
the number of points in r∗n preceded and succeeded by r∗’s
of opposite signs is computed. This number expressed as a
fraction of the total number of samples is τr . For example, the
sequence {+,+,−,−,+,−,++}, has two turning points,
and the TPR is 2/8 = 0.25.

Out of these 10 features, we use m at a time for classification. For
each value of m there may be many combinations of features, each
yielding a different performance. For training and testing, we used
the method of 10-fold cross-validation on the full set of 580 feature
sets. We utilized the receiver operating characteristic (ROC) method
to get classification performance measures for the best combinations
of m features. As a performance metric, we used the area under the
ROC curve (AUC).

4. PROPOSED CLASSIFICATION APPROACH

We developed a Bayesian formulation for the pattern classification
problem, but without assuming any parametric model for the class-
conditional likelihoods. After mapping the training feature sets, the
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test vector to be classified is mapped into the same feature space. To
get an estimate of the target (control) likelihood of the test feature
vector, we simply estimate the number of target (control) training
samples in the immediate vicinity of the test point and divide this
number by the total number of training data from target (control)
class N+(N−). However, we need to appropriately define the term
“immediate vicinity”.

The simplest assumption one can make about any feature data
is that they arise from a uniform distribution. That is, given any
region of hypervolume T in the feature space, the probability that
a given feature vector falls in this region is p = T/V , where V
is the total support hypervolume of the distribution. We define the
region as a rectangular cuboid (in m dimensions) whose volume W
is directly dependent on the support of each of the feature vectors, as
estimated from the training database. If the training feature vector is
xi = [xi

1, x
i
2, . . . , x

i
m]T , for i ∈ {1, . . . , N}, the feature supports

and total volume V can be defined as

Sj = max (x1
j , . . . , x

N
j )−

min (x1
j , . . . , x

N
j ); j = 1, . . . ,m (3)

V =
m∏

j=1

Sj . (4)

Assuming the window of immediate vicinity has width tj in a direc-
tion along the axis of the j-th feature, the corresponding hypervol-
ume is T =

∏m
j=1 tj . We assume each tj is directly proportional

to the support Sj of the corresponding feature. Given N training
vectors, the average number of training vectors mapping inside T is
Np. Thus, given some choice of μ, we can calculate the widths as

tj = γSj (5)

= Sj

( μ

N − kμ

)1/m

, ∀j ∈ {1, 2, . . . ,m}, (6)

where μ is simply a convenient way to define the window widths
for estimating the class-conditional probability of the feature vector,
and 0 < k < (1 − p)/p. Given these widths and knowledge of
the prior probability P (yi), we can define the class-conditional and
posterior probabilities for some unlabeled test feature vector x =
[x1, . . . , xm]T as

P (x|yc) = Kx/Kc, (7)

P (yc|x) ∝ P (x|yc)P (yc); c ∈ {+1,−1} (8)

where Kx denotes the number of training vectors xi in class c satis-
fying |xj−xi

j | ≤ tj , ∀j, and Kc denotes the total number of training
vectors in class c. A threshold dependent decision function can now
be defined as follows:

fNC(x;μ, ρ) =

{
+1,

P (y+1|x,μ)

P (y−1|x,μ) − ρ > 0.

−1, otherwise
. (9)

5. RESULTS

Empirical performance analysis was done across all possible feature
combinations to find good feature sets. AUC was found for each
decision function by varying the corresponding θ (parameters of the
decision function) in a way that the full ranges of sensitivity and
specificity are explored. It is denoted Aθ . It has been established that
the AUC metric is an estimate of the total probability that the value
of the decision function of a randomly chosen feature vector from

Table 1: Comparison of classification performance. Higher Aθ val-
ues imply better average classifier performance.

Method m Aθ Best TPR Best (1-FPR)

SVM 2 0.59 0.85 0.43
NDG 2 0.60 0.77 0.53
NC 2 0.66 0.69 0.59

SVM 9 0.66 0.78 0.53
NDG 9 0.68 0.64 0.61
NC 9 0.68 0.74 0.60

the target class is greater than that for a randomly chosen feature
vector from the control class [13]. Thus, the higher the AUC value,
the better the method performs (in an average sense).

For the SVM method, we kept the radial basis function scaling
factor fixed at 1 and varied the box constraint for soft margins, i.e.,
θ = C. When using the Bayesian method with Gaussian assumption
(n-dimensional Gaussian (NDG) method), we varied the likelihood
ratio threshold, i.e., θ = ρ. For the neighbour counting method fNC ,
we had to vary two parameters, μ and the likelihood ratio threshold,
i.e., θ = [μ, ρ]. However, the analysis was further complicated by
the fact that there were a number of possible feature combinations to
explore for each value of m. For instance, for m = 2, we had a total
of

(
10
2

)
= 45 feature combinations to sift through in finding the best

performance.

Thus, showing the full analysis of the entire feature-combination
space for all three classifiers is not possible due to space con-
straints. Instead we provide ROC curves for two different fea-
ture sets of lengths m = 2 (x = {ξU , σf}) and m = 9 (x =
{ξL, ξU , σf , Sr, εr, ρr, σ

2
r , τr,Kr}), respectively. These two fea-

ture combinations were found to give good classification perfor-
mance using all three methods. The corresponding receiver operat-
ing characteristic curves are shown in Figs. 1a and 1b respectively.
Table 1 summarizes the results. TPR denotes True Positive Rate
(also called Sensitivity) while FPR is the False Positive Rate (also
called the rate of false alarm). The terms “Best TPR” and “Best
(1− FPR)” denote the pair of coordinates (TPR, 1− FPR) that
maximizes the product TPR(1− FPR).

6. DISCUSSION AND CONCLUSIONS

The above results demonstrate the feasibility of using short epochs
for classification of FHR signals. We note that making a final deci-
sion on the status of the FHR series incorporates many other factors
including the presence of accelerations, variability around the base-
line, presence and frequency of contractions (obtained from the uter-
ine contraction signal) along with the use of long segments of car-
diotocographic signals. In practice, anywhere between 10-40 min-
utes of FHR signal may be used by doctors to do a classification.
While this has the advantage of utilizing more information, from a
signal-processing perspective, it is not very advantageous since the
FHR signal, like most biomedical signals, can have significant non-
stationarities across long time-scales.

In our proposed approach, we first classify short segments of
FHR series, followed by ensemble classification of the sequence of
short-classifications. Additionally, we have shown here the possi-
bility of using several features extracted from the FHR return series
instead of the raw FHR. Most of the statistical features such as vari-
ance, skew and entropy are usually applied on the raw signal. We can
see from the results that for a false-alarm rate of 40%, it is possible
to achieve 74% sensitivity using 9 out of the 10 considered features.
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Fig. 1: Receiver operation characteristic curve for the m-feature combinations from analysis of FHR data for all 3 methods, with (a) m = 2
and (b) m = 9. TPR = True positive rate (sensitivity); FPR = False Positive Rate.

When we studied class-separation performance using hypothesis
testing methods on individual features, we also analyzed the effect of
using segment lengths varying from 10s to 1 minute. It was observed
that the features from the raw FHR signal (i.e., ξU , ξL, σh) were
significantly separated for all segment lengths. For return features,
different results were obtained for different segment lengths. The
two nonlinear features were significant separators for all segment
lengths, while the statistical moments like total return and variance
were significant separators of shorter segment lengths (up to 30s).
However, since we were using non-overlapping epochs and a fixed
amount of real data, the total number of feature sets was different for
different segment lengths (fewer training sets of 1 minute length).
In our judgement, it makes sense to use results from bigger training
sets as a basis for choosing features, which is why we used 15s epoch
lengths.

To further improve the results, we need to study (a) feature ex-
traction from different durations of FHR and (b) a bigger database of
supervised training data. However, we note that complete visual an-
notation of large durations of FHR data segmented into many shorter
segments may not be feasible, and thus we also need to develop al-
gorithms for unsupervised or semi-supervised training. In addition,
we plan to include features extracted from the uterine pressure, as
input to the classifier.
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