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ABSTRACT

Novel efficient algorithms are developed to infer the phase of
a complex optical field from a sequence of intensity images
taken at different defocus distances. The non-linear observa-
tion model is approximated by a linear model. The complex
optical field is inferred by iterative Kalman smoothing in the
Fourier domain: forward and backward sweeps of Kalman
recursions are alternated, and in each such sweep, the ap-
proximate linear model is refined. By limiting the number
of iterations, one can trade off accuracy vs. complexity. The
complexity of each iteration in the proposed algorithm is in
the order of N log N , where N is the number of pixels per
image. The storage required scales linearly with N . In con-
trast, the complexity of existing phase inference algorithms
scales with N3 and the required storage with N2. The pro-
posed algorithms may enable real-time estimation of optical
fields from noisy intensity images.

Index Terms— Phase imaging, Kalman filter

1. INTRODUCTION

When coherent (laser) light passes through or reflects from
an object, its intensity and phase are altered as it continues to
propagate. Phase perturbations contain important information
about the object; for example, transparent biological cells are
invisible in a focused microscope, but impart distinct phase
changes. However, only the intensity can be measured di-
rectly, as phase oscillates far too quickly, and it needs to be
reconstructed computationally. This “phase problem” of op-
tical imaging has been around for decades, but only recently
has been posed as an inference problem [1, 7], in principle al-
lowing for experimental noise in the images. However, most
phase reconstruction methods are ad hoc and ignore the im-
portant effects of noise.

Traditional methods for recovering phase involve com-
plicated interferometric setups, so there is a significant ex-
perimental advantage to methods such as ours, which solve

∗M. A. Vázquez acknowledges the support of the Ministry of Education
of Spain(Programa Nacional de Movilidad de Recursos Humanos del Plan
Nacional de I-D+i 2008-2011). He conducted this research while visiting the
School of Electrical and Electronic Engineering at NTU.

for phase from a set of intensity images captured at various
distances along the optical axis. The first such method, the
Gerchberg-Saxton(GS) method [2, 3], treats the problem as
convex (which it is generally not) and iterates back and forth
between two domains to reduce error at each iteration; it is
strongly sensitive to the noise in the last image. The direct
method [4, 5, 6] exploits the Transport of Intensity Equation
(TIE); it is based on first- and higher-order derivatives, and it
is not robust to noise. A few statistical approaches have been
proposed as well; an approximation to the maximum likeli-
hood estimator is derived in [7, 8]. However, it easily gets
stuck in local maxima, and sometimes leads to poor results.
In [1] an extended Kalman filter was used to solve for phase
with significant noise corruption. However, the memory re-
quirements are of order N2, which is unfeasible for practical
image sizes of multiple megapixels, and the long computation
times are impractical for real-time applications.

In this paper we introduce a novel approach to the prob-
lem of amplitude and phase estimation. Just like the method
of [1], it is based on the Kalman filter. However, we make
certain convenient approximations to significantly reduce the
computational complexity, without jeopardizing the quality of
the reconstruction. Moreover, it is iterative and can trade off
computational complexity vs. reconstruction accuracy.

This paper is organized as follows. In Section 2, a brief
description of the problem and the mathematical model is pre-
sented. We derive our algorithm in Section 3. We present
experimental results in Section 4, and we offer concluding re-
marks in Section 5.

2. PROBLEM DESCRIPTION AND STATE SPACE
MODEL OF THE OPTICAL FIELD

We aim at estimating the 2D complex-field A(x, y, z0) at the
focal plane z0, from a sequence of noisy intensity images
I(x, y, z) captured at various distance z0, z1, z2, ..., zN . We
assume a linear medium with homogenous refractive index
and coherent (laser) illumination, such that the complex-
field at z0 fully determines the complex-field at all other
planes. The complex optical field at z is A(x, y, z) =
|A(x, y, z)|eiφ(x,y,z), where |A(x, y, z)| is the amplitude,
and φ(x, y, z) is the phase. Propagation is modeled by the

617978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



homogeneous paraxial wave equation

∂A(x, y, z)

∂z
=

iλ

4π
∇2

⊥A(x, y, z), (1)

where λ is the wavelength of the illumination, and ∇⊥ is the
gradient operator in the lateral (x, y) dimensions only. The
noisy measurements I(x, y, z) usually adhere to a (continu-
ous) Poisson distribution:

p[I(x, y, z)|A(x, y, z)] = e−γ|A(x,y,z)|2 (γ|A(x, y, z)|2)I(x,y,z)

I(x, y, z)!
,

(2)
where γ is the photon count detected by the camera. The
measurement at each pixel I(x, y, z) is assumed statistically
independent of any other pixel (conditioned on the optical
field A(x, y, z)).
We can discretize the optical field A(x, y, z) as a raster-
scanned complex column vector an, and similarly discretize
the measurement I(x, y, z) as column vector In. We denote
by b(u, v, z) the 2-D Fourier transform of A(x, y, z). The
column vector bn is again raster-scanned from b(u, v, z),
and hence can be expressed as bn = Kan, where K is the
discrete Fourier transform matrix. Since K is unitary, we can
write KK

H = K
H
K = U(with normalization), where U is

the identity matrix and K
H denotes the hermitian of K.

We can define the propagation matrix at zn as [9]:

Hn = diag
(

exp
[
− iλπ

( u2
1

L2
x

+
v2
1

L2
y

)
Δnz

]
, . . . ,

exp
[
− iλπ

(u2
M

L2
x

+
v2

N

L2
y

)
Δnz

])
, (3)

where Lx and Ly are the width and height of the image.
The relation between two images with distance Δnz in
Fourier domain can be written as,

bn = Hnbn−1. (4)

We approximate the Poisson observation model (2) with
a Gaussian distribution of same mean and covariance. In par-
ticular, we consider the approximate observation model:

In = γdiag(a∗
n)an + v, (5)

where v is a vector of Gaussian components with zero mean
and covariance R = γdiag(a∗

n)diag(an).
In summary, a simplified state-space model for the problem
at hand is:

state : bn = Hnbn−1 (6)

observation : In = J(bn)bn + v, with v ∼ (0,R), (7)

where J(bn) = γdiag(KT
b
∗
n)KH .

3. STATE ESTIMATION BY APPROXIMATE
KALMAN FILTERING

A modified Kalman filter for the state-space model (6)-(7) is
now derived. Since the observation equation (7) is non-linear,
the resulting algorithm is suboptimal. However, the result-
ing estimates of bn are accurate enough for our purposes, and
the simplicity of the filter makes it amenable for real-time
implementation. From the equations of the standard Kalman
filter [10], we have the three following steps:

(1) Initialization: b0 and error covariance matrix.
(2) Prediction: b̂n = Hbn−1; M̂n = HMn−1H

H .
(3) Update:

Gn = M̂nJ
H(JM̂nJ

H + R)−1 (8)

bn = b̂n + Gn(In − Jb̂n) (9)

Mn = M̂n − GnJM̂n. (10)

The computational burden of the above algorithm can be
reduced significantly by constraining the state covariance ma-
trix to be diagonal. We will show that in order for this con-
dition to hold at all times, it suffices to initialize the algo-
rithm with a diagonal covariancematrix (that is, M0 = α0U).
With this choice of initialization, Theorem 1 provides a sim-
ple update rule for the covariance matrix Mn, whereas The-
orem 2 provides a simplified expression for bn. In order to
prove those theorems, we have first derived two simple lem-
mas (Lemma 1 and 2). For the sake of brevity, we omit all
proofs here.

Lemma 1. If Mn−1 is diagonal, then M̂n = HMn−1H
H =

Mn−1.

Lemma 2. R = γ−1
JJ

H .

Theorem 1. If M0 = α0U, then Mn = αnU with αn =
αn−1

γαn−1+1 .

Theorem 2. The update formula for state is

bn = (1 − αnγ)b̂n + αnγJ
−1

In.

Table 1. Low-Complexity Algorithm for Inferring an Optical Field.

(1) Initialization: b0 and error covariance ma-
trix M0 = α0U.
(2) Prediction: b̂n = Hbn−1; M̂n = Mn−1.

(3) Update:

ân = K
H
b̂n (11)

Mn = αnU, with αn =
αn−1

γαn−1 + 1
(12)

bn = (1 − αnγ)b̂n + αnγJ
−1

In, (13)

The resulting algorithm is summarized in Table 1. Note
that the inverse of J in equation (13) can be computed effi-
ciently by means of a Fast Fourier Transform (FFT). Thus, if
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Nz images are available and the size of each image is N =
Nx × Ny , then the overall computational complexity of the
proposed algorithm is O(NzN log(N)).

4. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed method,
two sets of images have been considered. Data set 1 consists
of 100 images of size 100 × 100 pixels artificially generated
to simulate a complex field propagating from focus in 0.5 μm

steps over a distance of 50 μm with illumination wavelength
of 532 nm. Pixels are corrupted by Poisson noise so that, on
average, each pixel detects γ = 0.998 photons. Data set 2
comprises 50 images of size 150 × 150 pixels acquired by a
microscope. The wavelength was again 532 nm, and the defo-
cused intensity images were captured by moving the camera
axially with a step size of 2 μm over a distance of 100 μm.

4.1. Data Set 1 (simulated data)

Since the method of [1] has the computational complexity of
O(NzN

3) and strict storage requirements, each image has
been divided into 4 blocks of size 50×50 each. Nevertheless,
this approach still takes 13562.8 seconds, and is therefore im-
practical. The complexity of our method is O(NzN log N),
and hence it is not necessary to divide the image. Indeed, the
proposed method takes only 0.30 seconds to process the 100
(full) images.

Fig. 1(a) shows the intensity and phase images recovered
by both the proposed method and that of [1], along with the
true intensity and phase images. The average (across all pix-
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Fig. 1. (a) Recovered intensity and phase image by proposed
method (Data Set 1), compared with method of [1]. (b) Inten-
sity error and phase error for Data Set 1, as a function of the
number of images (total = 100).

els) root mean square error (RMSE) of our method as com-
pared to that of [1] is given in Table 2, with all phase results
in units of radians. The two methods clearly lead to artifacts
in both the intensity and phase recovered images: traces of
the phase image can be seen in the intensity image and vice

Table 2. Comparison with the method in [1].

Complexity Time [s] Storage Intensity/Phase Error Block

Method of [1] O(NzN
3) 13562.8 O(N2) 0.0091/ 0.01388 Yes

Proposed method O(NzN log N) 0.30 O(N) 0.0079/ 0.01664 No

versa. As we will show in Section 4.3, those traces can be
removed through an iterative algorithm.

It can also be observed in Fig. 1(a) that the images re-
covered by the method of [1] exhibit a block effect that shows
artifacts in the form of straight lines crossing the images. This
is due to the latter being processed in segments rather than as
a whole. The proposed method can handle the entire images
efficiently and hence, no segmentation artifacts occur.

In both the proposed method and that of [1] the estima-
tion error decreases as images are processed, as illustrated in
Fig. 1(b), which compares the RMSE incurred for increas-
ingly more images being added. Ultimately, both methods
seem to converge to to similar estimation errors for both the
intensity and phase. However, our low-complexity method
converges faster and uses significantly less memory.

Table 2 summarizes the results for the proposed method
and that of [1] for Data Set 1.

4.2. Data Set 2 (experimental data)

Fig. 2 shows the intensity and phase images estimated by the
proposed method when using Data Set 2, which was collected
from the experimental data. Running the algorithm over this
data set took 0.32 seconds whereas the algorithm of [1] took
7969.52 seconds, with blocks of size 40 × 40. The recovered
intensity and phase images did not exhibit a block effect, but
had some phase errors inside the lettering of MIT. As we will
show in next section, the results can be further improved by
means of an iterative algorithm.
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Fig. 2. Estimated intensity and phase by proposed method for
Data Set 2.

4.3. Iterative Algorithm

Instead of carrying out one forward sweep of Kalman recur-
sions, we now alternate forward and backward sweeps multi-
ple times. This will allow us to trade off computational com-
plexity for accuracy. When the forward recursion ends at the
last image, a backward recursion is started, initialized by the
current estimate of the (last) image. Likewise, when the back-
ward recursion ends at the first image, a forward recursion is
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started with the current estimate of the first image as initial-
ization.
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Fig. 3. Estimated intensity and phase by proposed method for
Data Set 1 at iterations 0, 5, 20 and 60, with computational
time of 0.30s, 3.18s, 12.11s, and 37.04s respectively.

Table 3. RMS for iterative method

Number of Iterations 1 5 20 60

RMS for Intensity Image 0.0078 0.0072 0.0071 0.0071
RMS for Phase Image 0.0165 0.0158 0.0152 0.0147
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Fig. 4. Estimated intensity and phase by proposed method for
Data Set 2 at iterations 0, 5, 20 and 60, with computational
time 0.32s, 3.39s, 12.90s, and 39.50s respectively.

The recovered intensity and phase images for Data Set 1
and different numbers of iterations are displayed in Fig. 3.
Each iteration consists of a forward and backward sweep of
the Kalman recursions. It shows how the artifacts gradually
vanish as the number of iterations increases. This is also as-
sessed numerically in Table 3, which shows the RMSE of the
intensity and phase images recovered for different numbers of
iterations. The difference in the RMSE is small but the image
quality improvements can be appreciated by comparing the
reconstructed images in Figs. 3 and 4.

Fig. 4 shows the recovered phase and intensity images for
the Data Set 2 with different numbers of iterations. It can be
seen that the pixels of the MIT logo in the recovered phase
images look brighter after a few iterations.

The computational complexity increases linearly with the
number of iterations. The total computational time is on the

order of tens of seconds, which is still rather low.

5. CONCLUSIONS

We have proposed Gaussian inference algorithms to recover
the phase and amplitude of a complex optical field from noisy
defocused intensity images. It requires vastly less storage
than existing methods (linear vs. quadratic), and it is substan-
tially less complex (close to linear vs. cubic), while attain-
ing high reconstruction accuracy. Moreover, it allows to trade
off between complexity and accuracy. Due to the scalabil-
ity of the wave equations and the simplicity of the measure-
ment technique, this method could find use in phase imaging
beyond optical wavelengths (for example, X-ray or neutron
imaging), where high-quality images are difficult to obtain
and noise is significant and unavoidable.
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