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ABSTRACT

Proliferation of low-cost nonintrusive wearable sensors en-

ables researchers to explore capabilities in monitoring phys-

iological parameters remotely expanding healthcare delivery

and reducing costs. One of the parameters that is known to

be important in rehabilitation and exercise physiology is hu-

man motion monitoring, such as analysis of the walking gait

and corresponding characteristics. This paper presents a ro-

bust on-line methodology for computing clinically relevant

metrics for assessing quality of the walking gait in normal

subjects and subjects with gait abnormalities, e.g. in patients

with stroke. Furthermore, this paper proposes a metric vec-

tor that enables characterization of spatiotemporal features of

walking quality evolution for post-stroke patients during and

after rehabilitation. This method enables visualization of the

gait improvement or changes as a result of the rehabilitation

or other treatment techniques.

Index Terms— Motion quality evaluation, adaptive

matching, clustering, PCA

1. INTRODUCTION

The conventional assessment methods of post-stroke patients’

motor functions are conducted through standard scale tests[1].

Such tests require patients to perform different tasks typical

for every-day motions when in the community. The perfor-

mance of patients is then scored by a physician or a qualified

personnel. These tests and methods, however, suffer from

the subjectiveness of physician’s judgement, minor changes

in specifics of the task performance or conditions in which

the test is conducted.

Today, the low-cost wearable sensing devices are prosper-

ously developing and being deployed in a variety of health-

care monitoring and assessment applications[2]. For exam-

ple, motion sensors, such as accelerometers, are deployed

for monitoring and analysis of locomotion or upper extremity

mobility [2, 3]. The reliability and validity of accelerometer

based wearable devices have been proved effective in charac-

terizing post-stroke patients’ walking[4, 5]. Wearable sensor

monitoring have shown to be complementary for performance

evaluation and can be deployed for monitoring in the commu-
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nity with feedback provided to the physicians and patients on

a daily basis[2, 3].

In this paper, algorithms for detailed analysis of the mo-

tion (e.g. accelerometer) data are presented, where variations

in each stride of the subject during locomotion are analyzed,

providing a quantitative and qualitative description of post-

stroke patient’s walking. This paper has the following contri-

butions: Firstly, an on-line methodology for computing clin-

ically relevant metrics and characteristics for subject lower

body mobility. Secondly, a metric vector, purely derived from

the accelerometer data and independent of sensor orientation.

Thirdly, a visualization method that indicates motion quality

evolution during and after patient rehabilitation based on a

longitudinal data. This enables physicians, patients and other

interested parties to visualize the effects of the rehabilitation

and treatment.

2. EVALUATION METRICS

The motion quality evaluation metric includes kinetic charac-

teristics and motion variability. These metrics are indepen-

dent of the orientation around the ankle placement given an

ankle band mounting method described in [2] and are feasi-

ble for large scale experiment deployment. The hardware is

an energy efficient platform with tri-axial accelerometers[6].

2.1. Kinetic Characteristics

Kinetic characteristics include walking speed, cadence, stride

length, symmetry and swing to stride ratio (SSR). Modeling

of speed, cadence and stride length has been elaborated in [2].

Symmetry is defined as a ratio of the impaired leg swing

time over the normal leg swing time[7]. Fig.1 shows a stride

segmentation from two legs. SSR is defined as a ratio of the

swing time over the complete walking cycle period t shown

in Fig.1, which is a sum of swing and stance times.

The walking cycle is identified by a peak detection al-

gorithm, where each of the peaks correspond to the moment

when heel of a foot strikes the ground - the most pronounced

element of the acceleration signal. After identifying the

boundary of each stride (e.g. the two consecutive peaks), an

adaptive matching algorithm is applied to identify the swing

phase within a stride.
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Fig. 1: Stride Segmentation

2.1.1. Identifying Boundary of Stride Cycle

Given a segment of walking accelerometer data (the walk-

ing state can be identified among other activities by state

classification[2]), the raw data is first transformed into a vec-

tor h =
√

x2 + z2. As can be seen from Fig.1, at the point

of heal striking (e.g. one of the highest peaks), h achieves

maximum value during a stride cycle. In the stride cycle of

Fig.1, the swing phase is comprised of the end part of one

stride and beginning part of the next stride. Swing phase

cannot be mapped precisely within the stride cycle if just

the consecutive heal strike detection is used for defining the

boundary indices.

However, consecutive heal striking of left leg provides the

boundary index information for the right leg and vice versa.

As can be validated by [8], the walking cycle of left leg will

affirmatively include a complete swing phase of the right leg

(however, not necessarily include the right leg stance period).

The algorithm switches the heal striking indices between left

leg and right leg as stride boundary information. Maximum

of h is derived by applying a peak detection algorithm.

For patients with hemiparesis, the transformed vector h
may not achieve maximum at heal striking from the impaired

limb data and thus cannot provide reliable index information

for the boundary of the normal stride. Typically multiple local

maxima are found (caused by both swing and heal striking)

by applying just the peak detection. According to the stride

boundary of impaired limb derived by peak detection from the

normal limb, a local maxima array that belongs to the same

stride is known. Since heal striking happens after swing, the

local maximum that is the end of local maxima array is nat-

ural to be heal striking from the impaired limb. In this way,

boundary indices for the normal leg are derived.

2.1.2. Adaptive Swing Matching

With a stride that contains a complete swing phase, an adap-

tive matching algorithm is applied to precisely identify its lo-
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Fig. 2: Swing Phase Adaptive Matching

cation.

This algorithm first performs a search within the stride

data S through all of its sub strings to identify the one that

has the smallest distance compared to the template, shown in

Eq.1. substring− represents the initial match result. The dis-

tance metric is calculated by the Dynamic Time Warping[9].

This provides an estimate of the similarity between the stride

substring and template. Motion data signal warping caused

by different walking speeds are adjusted accordingly.

Next, substring− is extended and shrank on both ends of

the boundary indices and the distance array is searched to find

the minimal distance. The corresponding substring is the final

match.

substring− = arg min(Dist(stride, template)) (1)

substring = min(Dist, Distshrink, Distexpand) (2)

Algorithm 1 shows the process. The input is a data vector

of a stride and a swing phase template, that has been precom-

puted. Lines 1-7 show the initial matching process. startind
and endind in Alg.1 are the start and end indices of the initial

match.

Lines 8-17 show the adaptive searching part of the algo-

rithm, where lines 8-12 and lines 13-17 expand and shrink the

sub string length of stride S separately. Finally, line 18 finds

the minimum distance of the three distance vectors and line

19 obtains the proper swing length by adjusting the startind
and endind. Fig.2 shows an example of expanded matching.

2.2. Variability

Variability is an important qualitative measurement of stroke

patients’ walking functionality[10]. We define an entropy

parameter to characterize variability and randomness in the

walking data.

Algorithm 2 shows the process to calculate entropy. In-

put is a vector of stride signals and a threshold value. The

stride signals are automatedly delimited by method proposed

in 2.1.1. The output of the algorithm is the entropy value.

In Alg. 2 lines 1-7 generate a lower-triangle distance matrix

of the stride vector, that is, a distance matrix for every two

strides. Each item in the distance matrix is a measurement of

signal similarity between the two strides.

The distance matrix is then compared against the input

threshold. The input threshold is determined by the mean

value of the distance matrix precomputed from a population
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Algorithm 1: Adaptive Swing Phase Matching

Data: s, template
Result: swinglen

1 begin
2 for n = 1 : len(s) − len + 1 do
3 d(n) = dtw(s(n : n + len − 1), template)
4 end
5 ind = find min(d)
6 startind = ind + 1
7 endind = startind + len(template) − 1
8 startexpand = startind − 5 > 0?startind : 1
9 endexpand = endind + 5 < len(s)?endind + 5 :

len(s)
10 for n ∈ [startexpand : endexpand do
11 dexpand = dtw(s(n), template)
12 end
13 startshrink = startind + 5
14 endshrink = endind − 5
15 for n ∈ [startshrink : endshrink do
16 dshrink = dtw(s(n), template)
17 end
18 shiftind = find min(d, dshink, dexpand)
19 adjust startind and endind with shiftind
20 return swinglen

21 end

of the healthy subjects. The algorithm then clusters the strides

by their mutual distance. That is, if D(i, j) < threshold,

then stride i and stride j are defined as connected and thus

merged into the same cluster. Lines 11-14 show this process.

The algorithm stops looping when the number of clusters does

not change.

After this step, the strides are merged into different clus-

ters on the basis of their similarity. Finally, the entropy value

is calculated according to the definition. The entropy is upper

bounded by
∑ logn

n and lower bounded by 0.

3. EXPERIMENTS

For the experimental evaluation of the proposed algorithms,

20 subjects have been recruited. Nine of these subjects are

healthy individuals with subject IDs 1-9, and the other 11

are stroke patients with different severity of the condition and

IDs of 11 to 17. An appropriate UCLA IRB and the sub-

ject consent approvals were obtained before the experiments.

Of the 11 stroke patients, seven have records for only one

time evaluation and the other four have longitudinal records

including evaluations of four and more times over the period

of several weeks. Those four patients are participants of the

SIRRACT[11] project (with IDs 17 to 20). The experimental

data includes 36 unique data records and observations in total.

Each subject was instrumented with two triaxial ac-

Algorithm 2: Entropy Calculation

Data: S = (s1, s2..., si, ...sj),threshold
Result: Eval

1 begin
2 for n = 1 : j do
3 for m = 1 : j do
4 if m ≥ n then continue

5 else Dist(n, m) = dtw(sn, sm)
6 end
7 end
8 for n=1:j do
9 index{n}=find Dist(n, :) < threshold

10 end
11 for index{i} ∈ index{1 : n} do
12 if index{i}&index{j}! = 0 then
13 merge index{i} and index{j}
14 end
15 for n = 1 : len(merg cluster) do
16 prob(n) = len(merg cluster(n))./len(S)
17 end
18 Eval = −1 ∗ sum(prob. ∗ log(prob))
19 end

celerometer devices, MDAWN[6], one around each ankle.

Both MDAWNs of every patient are time synchronized before

the data collection and monitoring. Each subject is instructed

by the physician to walk with three different speeds (fast,

average and slow) moderated by the subjects themselves,

traversing a distance of 33 to 50 feet.

The complete metric vector includes entropyleft, entropyright,

symmetry, SSRleft, SSRright, speed, cadence and stridelen,

and is calculated for each subject. The kinetic parameters are

averaged during the test.

A matrix of 36 by 8 is generated (e.g. number of obser-

vations vs metric vector). In order to provide effective visual-

ization of the recovery evolution for these patients, the matrix

is subjected to the principal component analysis (PCA). Eight

principle components are generated and the first two explain

84.78% of the variance. The algorithm then projects the ob-

servations onto the first two dominant principle components

for the data from the four longitudinal patients, as shown in

Fig.3.

The green stars in the Figure represent the data cluster for

the nine healthy subjects. The red crosses represent the seven

stroke patients that have only one-time record, and the cor-

responding cluster. These are the two control groups. The

linked blue circles in each figure represent the evolution route

of the individual patients from the moment they are first ad-

mitted to the hospital until discharge with comparison to the

control group data overlaid.

Fig.3a-d have different resolutions according to the per-

formance of the patient. Patient ID17 and 18 are generally
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(a) Patient ID 17 (b) Patient ID 18 (c) Patient ID 19 (d) Patient ID 20

Fig. 3: Patient Gait Evolution Visualization

weaker, while patients ID19 and ID20 have better perfor-

mance initially. Thus, in the last two subfigures, the control

group of the nine stroke patients is not shown. In these cases

the goal is to emphasize the distance between the healthy

control group and the patient recovery evolution route.

4. CONCLUSION

In this paper, we explore the methods to derive metrics of vari-

ability, swing ratio, swing stance time, speed, stride length

and cadence from pure accelerometer data, and decompose

the signal to visualize the evolution process of patient recov-

ery.

This method is not limited to stroke patients. It can be

applied to other communities, such as patients with Parkin-

son’s or Multiple Sclerosis conditions. The metric value itself

provides a physician with the relevant information about the

patient on a frequent time basis (for example daily), and can

alarm when abnormal events occur. Furthermore, some of

the metrics, for example entropy, can provide physician with

prognostic inference about a likely fall.

The visualization provides macroscopic view of the pa-

tient performance over a longer period of time and can aid

physicians to better understand recovery process.

The visualization also provides clustering based on the

performance of the patients. However, with limited obser-

vations, it is too early to draw conclusions. In the near future,

with more patients recruited to the SIRRACT[11] project, the

project is on its way towards data analysis for a larger group

of stroke patients.
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