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ABSTRACT
Snoring was once regarded as an indication of good sleep.

But recently it has been known to be one of the symptoms

which indicate sleep disordered breathing such as sleep apnea

syndrome. Moreover, heavy snoring caused by oral breath-

ing sometimes leads benign snorers to be apneics. Thus, it is

important to detect oral snoring for medical treatment in the

earlier stage, but we cannot know our own snoring. This pa-

per describes a method to detect oral snoring by extracting the

acoustic properties of snoring sounds and using the k-Nearest

Neighbor classifier. As a result, over 92% of snoring sounds

are successfully classified under the various cross validation

evaluations.

Index Terms— Biomedical Signal Processing, Pattern

Recognition, Snoring Sounds

1. INTRODUCTION

In this paper, we propose a novel method to classify oral/nasal

snoring using the acoustic properties of snoring sounds: fun-

damental frequency and the maximum of the amplitude spec-

trum in a specific band. The purpose of this classification is

to develop a home medical device which detects an abnormal

oral-related snoring automatically at bedside. Snoring was

once regarded as an indication of good sleep, but recently it

has been known to be one of the symptoms which indicate

sleep disordered breathing such as sleep apnea syndrome [1].

Especially, heavy snoring caused by oral breathing sometimes

leads benign snorers to be apneics. Thus, it is important to

detect oral snoring during sleep in the earlier stage, but we

cannot know whether our own snoring is abnormal or not.

Many medical researchers have analyzed snoring sounds

so far in an attempt to clarify the difference between the

acoustic properties of snoring sounds in patients with and

without obstructive sleep apnea (surveyed in [2]), but they

have not focused on the acoustic properties of breathing route

(mouth/nose) during snoring and no concrete method for the

automatic classification has been established. In this paper,

we analyzed the acoustic properties of snoring sounds and

propose an automatic classification method so as to develop a

home device that can detects oral snoring.

2. CLASSIFICATION PROCEDURE

2.1. Data Acquisition

A portable linear PCM (Pulse Code Modulation) sound

recorder, Olympus LS-10, is used to record snoring sounds.

Sampling frequency and quantization rate are set to 14.7 kHz

and 16 bit respectively. Snoring sounds are recorded from

seven subjects and the recording time is about 15 seconds per

person and per breath.

All subjects are asked to simulate snoring by breathing

deeply enough to vibrate the soft palate in their throat. While

producing oral snores, the subjects’ nostrils are completely

closed with their fingers, and on the other hand they are asked

to let their mouth completely closed while producing nasal

snores. Since two out of seven subjects cannot produce snor-

ing by breathing nasally, as also reported by Liistro, et al[3],

we abandoned obtaining the nasal simulated snores from

these persons.

Such snoring, called simulated snoring in common, is not

the one generated from a person during sleep, but it has tra-

ditionally been adopted in some medical studies [3][4]. Her-

zog and coworkers analyzed the difference between acoustic

properties of simulated snoring and those of natural (noctur-

nal) snoring, and demonstrated that they are quite similar to

each other, especially in the case of periodic snoring[4]. Ac-

cording to these studies, we decided to deal with simulated

snoring sounds in this study.

2.2. Subsequence Extraction

First of all, a snoring sound with each inhalation (called an
episode) is cut out manually one by one from the recorded

sleep sounds (see fig.1). Since the acoustic properties of snor-

ing sounds are nonstationarily changing as time passes even

in an episode[5], we extracted short-time subsequences from

all episodes by sliding the window across the episode. This
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Fig. 1. An extraction method of episodes and subsequences

of snoring sounds from a recorded sound.

technique is commonly used in speech recognition. The win-

dows prepared for extracting subsequences are 0.2 seconds

in length and shifted 0.1 seconds. The ith extracted subse-

quence is expressed as xi(t). As a result, we can obtain 710

oral and 511 nasal subsequences from all subjects, and they

are our classification targets. Since two out of seven subjects

cannot produce nasal snoring as mentioned above, the num-

ber of nasal subsequences is somewhat lower than that of oral

ones.

2.3. Feature Extraction

2.3.1. Fundamental Frequency

Figures 2 and 3 show some examples of subsequences xi(t)
and their FFT amplitude spectra expressed as |Xi(f)|. Ac-

cording to these figures, it seems easy to find out qualita-

tively some differences between the acoustic properties of

oral snores and those of nasal ones.

First, we focused on the fundamental frequency, which is

known as the eigenfrequency of the soft palate vibration[3],

because the period of nasal snoring sounds are lower than that

of the oral ones. Many pitch detection algorithms have been

proposed so far, but we used in this paper Harmonic Product
Spectrum (HPS) method, because the harmonic peaks identi-

fied in lower frequency domain in these figures are suitable

for the HPS algorithm. The HPS is defined as follows:

Hi(f) =
r∏

m=1

|Xi(mf)| (1)

where r is the number of harmonic peaks in the frequency

domain. Thus, Hi(f) has a single prominent peak at the fun-

damental frequency by multiplying the down-sampled ampli-

tude spectra. So we can solve the fundamental frequency fb

by using the following criterion:

Hi(fb) = max Hi(f) (2)

But there is a variety of the number of harmonic peaks in

the snore spectra. It is important to adjust the parameter r to

a suitable value.

2.3.2. The Maximum of the Amplitude Spectrum in the Spe-
cific Band

According to figures 2 and 3, there are some intensity peaks

around 900 Hz in the amplitude spectra of oral snores,

whereas no such peaks exist in the spectra of nasal ones.

Therefore, we considered such intensity peaks as a useful

property to discriminate oral snores from nasal ones, and de-

fined the maximum of the amplitude spectrum in the specific
band as follows:

|Xi(fm)| = max
f1≤f≤f2

|Xi(f)| (3)

Namely, the maximum of the amplitude spectrum is obtained

at fm Hz, which is also greater than or equal to f1 Hz and less

than or equal to f2 Hz. In this case, it is necessary to adjust f1

and f2 to suitable values so as to realize the best performance.

2.4. Classification

A combination of two acoustic properties (|Xi(fm)|, fb) es-

timated from the ith subsequence is defined as 2-dimensional

feature vector expressed as xi = (|Xi(fm)|, fb). In this

paper, we adopt k-Nearest Neighbor (kNN) classification

method, which assigns the class label which is the most fre-

quent among the k reference data closest to the input whose

class is unknown.

3. PERFORMANCE EVALUATION

3.1. 10-fold Cross Validation Test

The classification performance is evaluated using 10-fold
cross validation (10-fold CV) test. In this test, all fea-

ture vectors are divided into 10 groups, G1, G2, · · · , G10,

at random. The data belonged to G1 are used as the test

data and the remainder as the reference data. Then, the

kNN method estimates the classification result of the test

data using the reference data. The classification rate of

the input data, r1, is calculated by comparing their cor-

rect class labels. The same procedure is also done for the

groups G2, G3, · · · , G10 respectively, and the correspond-

ing classification rates r2, r3, · · · , r10 are also calculated.

Finally, the classification rate of all data is obtained by
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Fig. 2. Subsequences of oral snoring and their amplitude

spectra.

R =
∑10

j=1 |Gj |rj/N , where N is the number of all data.

So far, the 10-fold CV test has been widely used in pattern

recognition studies, but, in order to demonstrate the useful-

ness of our method more objectively, we consider two more

different ways of dividing the data into groups.

3.2. Leave-One-Out Test

Next we tried to use as many reference data as possible, so

we assigned only one datum to the group Gj . Namely, the

number of groups is equal to the number of all data. The

other procedures are the same as 10-fold CV. This evaluation

test is called Leave-One-Out (LOO) test in common and has

been adopted in many studies.

3.3. Leave-Episode-Out Test

On further consideration, it is possible that one subsequence

may be quite similar to the ones extracted from the same
episode. Even if they do not overlap each other, subsequences

extracted from the same episode may be generated from the

same vibration dynamics provoked by the same inhalation.

Thus, in step 1, we defined the number of groups as the num-

ber of episodes and assigned the data extracted from the same

episode into the same group. We call this evaluation method

Leave-Episode-Out test in this study. According to this, there

are not subsequences extracted from the same episode in a

reference data set.

Fig. 3. Subsequences of nasal snoring and their amplitude

spectra.

3.4. Leave-Subject-Out Test

An individual difference may be what we must consider the

most in this study. It may not be deniable that the difference

between the subjects is larger than that between their breath-

ing routes. But we cannot evaluate such a difference using

10-fold CV or LOO test. Accordingly, we assigned the data

obtained from the same subject into the same group, and the

number of groups is the same as the number of subjects. The

other procedures are the same as 10-fold CV. We call this eval-

uation method Leave-Subject-Out test in this study.

4. RESULTS

In this study, three parameters r, f1, f2 for feature extraction

are determined to 3, 500 Hz,1500 Hz respectively. These val-

ues are obtained by maximizing the classification rate through

experiments under the LSO test. Figure 4 shows scatter plots

in the feature space where oral and nasal subsequences are

represented with triangles and circles respectively. Oral

snores are more widely scattered than nasal ones, but they are

well separated from each other except a few outliers.

Figure 5 shows the classification results with different

number of neighbors, k, under the four evaluation tests. Ac-

cording to this, classification rates under the 10-fold CV,

LOO, and LEO tests are almost the same. But in the case

of LSO test, the rate is about 3% lower than those calcu-
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Fig. 4. Scatter plots of nasal (circles) and oral (triangles) snor-

ing sounds on the 2-dimensional feature space

lated under the other evaluations. This indicates that there

is a little individual difference in the acoustic properties of

snoring sounds. But we can obtain a good performance; the

classification rate is over 92%.

5. DISCUSSION

There are some intensity peaks from 500 Hz up to 1500 Hz in

the frequency domain of oral snores, but we cannot find any

in that of nasal ones. Such intensity peaks probably shows a

formant-like resonance property in subject’s throat modeled

with a linear filter. Emoto, et al., [6] have demonstrated that

the formant frequency of snoring sounds indicates the differ-

ence between benign snorers and apneics. Koutsourelakis, et

al., [7] have mentioned that many apneics spend more time

breathing orally than benign snorers during sleep. Based on

these bibliographical review, it is possible that such intensity

peaks indicate the formant frequency that also indicates the

useful information about oral snoring and its relation to sleep

apnea. This should be further analyzed using real snoring

sounds obtained from apnea patients.

6. CONCLUSION AND FUTURE WORKS

Oral and nasal snoring can be successfully classified with

good accuracy using two acoustic properties we focused on.

In the future, more data should be collected for objective

evaluation and the relation between the formant-like intensity

peaks and sleep apnea should be clarified theoretically and

experimentally.
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Fig. 5. Scatter plots of nasal (circles) and oral (triangles) snor-

ing sounds on the 2-dimensional feature space
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