
A NEW TIME DOMAIN CONVOLUTIVE BSS
OF HEART AND LUNG SOUNDS

Bahador Makkiabadi ∗†, Delaram Jarchi ∗‡, and Saeid Sanei∗
∗ NICE Group, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK

† Electrical Engineering Department, Islamic Azad University, Ashtian branch, Ashtian, IRAN
‡ Hamlyn Center, Department of Computing, Imperial College, London, UK

Abstract—In this paper the objective is to separate nonsta-
tionary heart and lung sounds from their convolutive mixtures
in time domain. In order to separate the sources an orthogonal
source model and a gradient based optimization have been
used to best model the mixing system and best estimate the
parameters respectively. Having diagonal or quasi diagonal
covariance matrices for different source segments and also having
independent profiles/envelops for different sources (which implies
nonstationarity of the sources) are the requirements for our
convolutive method. We applied the method to synthetically
mixed real heart and lung sound signals. Compared to the other
methods, the results show the high capability of the method for
separating nonstationary heart and lung sound signals.

Index Terms—Blind Source Separation, Heart-Lung Sounds,
Convolutive Mixture, Orthogonal Model.

I. INTRODUCTION

In many of the conventional statistical signal processing methods
the signals are treated as they are statistically stationary. That means it
is assumed that the parameters of the underlying physical mechanisms
which generate the signals do not vary with time. But for most of the
signals from man-made systems such as those encountered in physical
and physiological systems, mechanical systems and communication,
radar and sonar systems, some parameters and statistical properties
vary with time. This imposes nonstationarity (or in some cases
cyclostationarity) of the data. Among them auscultation of heart
and lung sounds involves complicated variation of mixing medium
with time which makes a nonlinear or nonstationary convolutive
mixing of the two sounds recorded by each stethoscope. Cardiac
pulsation and blood flow in the body are the major sources of a class
of physiological artifacts in most of biomedical recordings. These
artifacts are directly related to the heart activity and depending on
the acquisition technology interfere with the underlying signals in
different forms. Heart sounds are caused by flow of blood into and
out of heart through valves and also heart tissue movements [1]. By
placing a stethoscope over the chest, close to heart location, four
basic heart sounds can be identified which are referred to as S1,
S2, S3, and S4. The first and second heart sounds (S1 and S2)
are the most fundamental heart sounds. S1 is caused by closure
of the mitral and tricuspid valves at the beginning of ventricular
contraction. During this contraction cycle the blood is pumped from
heart to body. S2 is caused by closure of the aortic and pulmonic
valves at the beginning of ventricular relaxation. The third heart
sound (S3), when audible, occurs early in ventricular filling and
the fourth heart sound (S4), when audible, is caused by vibration
of the ventricular wall during atrial contraction. Both S3 and S4 do
not have significant amplitude and mostly are not audible in healthy
subjects. These components of heart sound are ignored in most of
heart sound processing applications. Main frequency components of
the heart sound are concentrated in the range of 20-150Hz. Removing
heart sound signals from respiratory signals has been studied in many
research works so far. The easiest way to cancel heart sound is to
highpass filter the respiratory signals. However, due to temporal,

spatial, and spectral overlaps of the heart and lung sounds, part of
the useful signal information may be lost. Different methods based
on adaptive filtering [2][3], Wavelet denoising [4][5], time-frequency
filtering [6][7], and modulation filtering [6] have been proposed
to overcome this problem. In [8] and [7] blind source separation
methods have been used to separate heart and lung sounds from multi-
channel recordings. Due to the complex nature of the mixing system
common blind source separation (BSS) methods, however, do not
result in accurate separation in this problem. Therefore, the proposed
approach here is meant for separation of convolutive nonstationary
mixtures of heart and lung sounds blindly.

BSS is a technique to estimate unknown source signals from
their mixtures without any prior knowledge about the sources or
the medium. In some applications, signals are mixed through a
convolutive model and this makes the BSS a difficult problem. A
number of convolutive BSS (CBSS) methods as addressed in [9],
have been published recently. There are three major approaches for
solving the convolutive BSS problem; (i) time domain BSS, (ii)
frequency domain BSS, where the convolutive problem is transferred
to frequency domain whereby, the convolution operation changes
to multiplication, and (iii) the approach which uses time-frequency
domain in the sense of doing adaptation in both time and frequency
domains which because of switching between the two domains is
computationally expensive [10]. Some time-domain CBSS methods
assume that the source samples are not temporally correlated. These
types of methods are called multichannel blind deconvolution (MBD)
methods. Consequently, if the original sources are not white, their
time structures will be lost and this will cause distortion in the recov-
ered signals. Hence, additional information from temporal structure
of the sources is needed to preserve their temporal information. The
method proposed in [11], so-called MBD-MFD, after applying MBD
in its first stage tries to recover the temporal information of the
sources using minimal filter distortion (MFD) concept. This method
has shown good results for separation of speech signals. On the other
hand, the time frequency methods, such as the method proposed in
[12] by Parra as an extension of the second order blind identification
(SOBI) algorithm, has been used for joint diagonalization of the
spectral covariance matrices for all the time blocks. This method,
similar to the other frequency based methods, suffers from permuta-
tion ambiguity and mitigating this problem can have strong effect on
its results.

In this paper in order to skip the frequncey domain problems, we
have developed a time-domain approach. Unlike MBD-MFD method,
we do not apply blind deconvolution. Therefore, we do not need any
post processing algorithm to recover the sources and similar to all
other BSS methods we assume that the sources are independent or
more specifically the covariance matrix of the source signals and
all their reasonable size segments are diagonal. Let’s consider the
following instantaneous mixing system:

xi(t) =

Ns∑
j=1

aijsj(t) + vi(t), i = 1, · · · , Nx (1)

where Ns and Nx are respectively the number of sources and sensors,
aij are the elements of mixing matrix A, and xi(t), sj(t), and vi(t)
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are ith sensor, jth source, and ith noise signals at time instant t.
Using matrix notations the above formulation can be represented as
follows:

X = SA
T +V (2)

where X ∈ R
N×Nx , S ∈ R

N×Ns , and V ∈ R
N×Nx denote

respectively the matrices of observed signals, source signals, and
noise. A∈RNx×Ns is the mixing matrix. Recovering the sources
from the acquired mixtures has been investigated by incorporating
different assumptions about the sources or mixing systems. The
approach proposed here relies on orthogonality of the sources in
different time segments. A simple temporal segmentation procedure
has been developed to divide the signals X and S to K segments
without overlap and with segment sizes as Nk. So, after temporal
segmentation of X the main model changes to:

Xk = SkA
T +Vk

subject to S
T
k Sk = D

2
k; ∀ k = 1, . . . ,K

(3)

where Xk ∈ R
Nk×Nx and Sk ∈ R

Nk×Ns are respectively the
mixture and the source signals and Dk is diagonal/semi-diagonal
for each segment k. For simplicity, we ignore the noise term Vk

and, also based on orthogonality of Sk, each orthogonal Sk can
be decomposed into one orthonormal matrix Pk and one diagonal
matrix Dk, which absorbs the norm of different sources at each
segment k. In this decomposition, the diagonal elements of Dks can
be either positive or negative and also their sign can be absorbed
in their respective column of Pk. When Dk diagonal elements are
nonnegative, the proposed orthogonal decomposition Sk = PkDk

also can be equal to the polar decomposition of orthogonal Sk where
Pk is the orthonormal part and the diagonal/semi-diagonal Dk is the
positive-semidefinite (PSD) part of decomposition [13]. So, based on
the above decomposition the source model can be rewritten as:

Sk = PkDk

subject to P
T
k Pk = INs

; ∀ k = 1, . . . ,K
(4)

where INs
∈ R

Ns×Ns is an identity matrix. Actually the above
formulation tries to define a structured model for the source signals
Sk. Above source model is independent of the mixing system and
is valid for convolutive mixing systems as well. In this work this
source model has been used to define a structured model for convo-
lutive mixture signals and ultimately separation of the sources and
estimation of the mixing channels for different lags. The remainder
of the paper is structured as follows. In Section II our model and
its problem formulation is described. In Section III estimation of the
model parameters is provided. In Section IV the results of applying
the method to synthetically mixed real data are provided. Finally
Section V concludes the paper.

II. CONVOLUTIVE MIXING MODEL AND PROBLEM

FORMULATION

Consider the convoltive BSS problem based on the orthogonal
model (4). In many practical situations the signals and their reflections
reach the sensors with different time delays. The corresponding delay
between source j and sensor i, in terms of numbers of samples, is
directly proportional to the sampling frequency and conversely to the
speed of sound in the medium, i.e. aij ∝ dij × fs/c, where dij , fs,
and c are respectively, the distance between source j and sensor i, the
sampling frequency, and the speed of sound. A general formulation
of the CBSS for each time segment of k (ignoring the noise part)
can be written as:

xki(t) =

Ns∑
j=1

M−1∑
τ=0

skj(t− τ)aij(τ); ∀ i = 1, . . . , Nx (5)

where aij(τ) are the elements of mixing matrix Aτ at different time
lags τ and M is the maximum number of lags. Above convolutive

mixing model can be formulated using matrix notations as follows:

Xk =

M−1∑
τ=0

ΞτSkA
T
τ ; ∀ k = 1, . . . ,K (6)

where Ξτ = [0M−τ , INk
,0τ ] denotes a shift matrix which repre-

sents a shift operator for Sk∈R
(Nk+M)×Ns and 0n∈R

Nk×n is a
zero matrix [14]. Regarding (4) and after substituting Sk with its
orthogonal model the final convolutive model of the mixture signals
Xk can be shown as:

Xk =

M−1∑
τ=0

ΞτPkDkA
T
τ

subject to P
T
k Pk = INs

; ∀ k = 1, . . . ,K

(7)

Define the overall cost function J for our optimization problem as:

J(Pk,Dk,Aτ ) =
K∑

k=1

||Xk −

M−1∑
τ=0

ΞτPkDkA
T
τ ||

2
F

subject to P
T
k Pk = INs

; ∀ k = 1, . . . ,K

(8)

where ||.||F is Frobenius norm. Two sets of parameters (P1, ...,PK)
and (D1, ...,DK) vary for different ks however, (A0,A1, ...,Aτ )
are fixed for all ks. In order to approach an unique solution (subject
to estimation of the filtered version of sources and permutation
ambiguities) to the above problem one extra constraint is imposed on
those parameters which are not fixed for all segments. Orthogonality
of source profiles is a constraint that is imposed on Dks along the
segments. This constraint physically means that the activities of the
sources are relatively sparse along the segments rather than being
sparse for each time sample. In this work no constraint is imposed
on the mixing channels Aτ . However, having fixed Aτ s for all
segments can be considered as a weak constraint on Aτ s. In order to
fit the model of mixtures (7), alternating optimization, are developed
for estimation of the three sets of parameters (A0,A1, ...,Aτ ) and
(P1, ...,PK), (D1, ...,DK) separately. The next section introduces
the process to estimate all the parameters of the above optimization
problem.

III. ESTIMATION OF THE MODEL PARAMETERS

The parameters in (8) can be estimated using three alternating
minimizations for estimation of the three sets of existing parameters
separately. The following procedures introduce the minimizing pro-
cesses for estimation of (A0, ...,Aτ ) and each set of (D1, ...,DK)
and (P1, ...,PK) parameters.

A. Estimation of A
τ
s

Assume Pk and Dk for k = 1, . . . ,K are known. Then, to
estimate Aτ the sum in (7) can be converted to matrix multiplication
as follows:

Xk =

[Ξ0PkDk,Ξ1PkDk, · · · ,ΞM−1PkDk]

⎡
⎢⎢⎢⎣

AT
0

AT
1

...
AT

M−1

⎤
⎥⎥⎥⎦ (9)

After defining new variables Zk and Ă as:

Zk = [Ξ0PkDk,Ξ1PkDk, · · · ,ΞM−1PkDk]

Ă =

⎡
⎢⎢⎢⎣

AT
0

AT
1

...
AT

M−1

⎤
⎥⎥⎥⎦ (10)

every Xk can be modelled as Xk = ZkĂ.
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By stacking X1, . . . ,XK and Z1, . . . ,ZK in two new matrices we
have a set of linear equations. The mixing hyper matrix for different
lags, Ă, can be estimated as follows:

Ă =

⎛
⎜⎜⎝

Z1

Z2

...
ZK

⎞
⎟⎟⎠

†⎛
⎜⎜⎝

X1

X2

...
XK

⎞
⎟⎟⎠ (11)

where † refers to the pseudo-inverse operation. After rearranging Ă,
estimation of Aτ for each τ will be available.

B. Estimation of Pks
At this section it is assumed that Aτ s and Dks are known for all

k and τ and estimation of all Pks is required. Based on the model
in (7) it is necessary to find orthonormal Pks to fit the model at
each segment k. This problem can be solved for each k separately.
So, after defining a new variable Gτ = DkA

T
τ a local minimization

problem for each k can be defined as:

Jk(Pk) = ||Xk −

M−1∑
τ=0

ΞτPkGτ ||
2
F

subject to P
T
k Pk = INs

(12)

without having orthogonality constraint on Pk there is a closed
solution for Pk as:

vec (Pk) =

(
M−1∑
τ=0

G
T
τ ⊗Ξτ

)†

vec (Xk) (13)

where vec(.) is matrix to vector converter operator and ⊗ denotes
Kronecker product. Because of high dimensionality of Ξk this
solution is computationally expensive and also does not support the
orthogonality constraint of Pk. Moreover, in our blind process, the
exact Gτ are not available and the above exact solution may force
the algorithm towards a local minimum. In order to overcome these
problems an iterative approach has been developed. One standard
iterative solution for the unconstrained version of (12) is proposed in
[15]. Using this iterative concept the solution of constrained problem
can be proposed as:

Qk =Pk +
μ

M

(
M−1∑
i=0

Ξ
T
i

(
Xk −

M−1∑
τ=0

ΞτPkGτ

)
G

T
i

)

Pk ← UkV
T
k

(14)

where Uk and Vk include orthonormal left and right singular
vectors of Qk using singular value decomposition (SVD) as Qk =

UkΣkV
T
k and μ ≤

(∑M−1
τ=0 ||Gτ ||

2
)−1

. In above formulation
Qk is the solution to the unconstrained version of (12) and it is
computed iteratively by minimizing the gradient. However, updating
Pk in (14) imposes the orthogonality constraint. There is another
standard iterative solution for the above constrained problem using
majorization concept which is computationally more intensive than
the gradient based method [16][17].

C. Estimation of Dks
Estimating Dks as part of the main model can be performed for

each k separately. The unconstrained estimation of diagonal elements
of Dk stacked in vector mk∈R

Ns×1 can be shown by:

mk =

(
M−1∑
τ=0

Aτ �ΞτPk

)†

vec (Xk) (15)

where � denotes Khatri-Rao product. Moreover, in order to have
more robust estimations an orthogonality constraint is imposed be-
tween on vectors including the diagonal elements of all Dks. Figure
1 shows typical profiles (absolute value of diagonal elements of Dks)

of sound signals. Actually, the orthogonality is applied to the source
envelopes along the time segments called their profiles. For this, the
transposed version of mks for all k = 1, ...,K must be stacked in
matrix C∈RK×Ns and then each row of the orthogonalized version
of C will be the final estimation of diagonal elements of Dks as:

Dk = diag(mT
k RΣ

−1
R

T ) (16)

where diag(x) makes a diagonal matrix with diagonal elements equal
to x elements and R and the diagonal Σ include the right singular
vectors and singular values of C respectively.

By estimating the model parameters, both blind identification (by
estimation of Aτ ) and source separation (by estimation of all Sk

as Sk = PkDk) can be performed simultaneously. Alternating
optimization is used to minimize J(.) which has monotonical conver-
gence property. The alternating optimization is robust to noise and at
the presence of noise the minimum value of J is proportional to the
noise variance. Therefore, in order to define a stopping criterion for
the optimization we define σ = Jold−Jnew

Jold

. The final algorithm for
alternating minimization process for estimation of all the parameters
is shown in Algorithm 1. In the next section this algorithm will be

Algorithm 1 CBSS parameter estimation using alternating
minimization

Step1 : Initialize all of the model parameters randomly.
Step2 : Estimate Pk using (14) for all k = 1, ...,K.
Step3 : Estimate Aτ s using (11).
Step4 : Estimate Dks using (15) and (16).
Step5 : Check the σ if σ > ε, go to Step2 till convergence

applied for separation of heart and lung sound signals. These signals
can be considered mutually orthogonal for certain segment sizes.
Moreover, their profiles are normally independent of each other which
provides orthogonality of profiles as the second requirement for the
proposed method.

IV. SIMULATION RESULTS

In this section the proposed method is evaluated for separation of
nonstationary heart and lung sources from their convolutive mixtures.
The signals are chosen from sample signals provided in [18] to be
mixed convolutively. Signals are sampled at 8000 Hz. In order to
simulate the geometrical positions of the stethoscopes on chest the
maximum number of lags to build up their convolutive mixtures
is selected as 30 (M = 30) and the mixing matrices for different
lags are randomly generated. To build up the segmented data from
the mixtures a temporal segmentation scenario has been used with
segment size of Nk = 300 without overlap. All parameters of the
model are randomly initialized and the algorithm converged after
50 iterations. Due to blind processing of the data, the estimated
mixing channels are not necessarily similar to the original ones.
While, the estimated profiles Dks are very close to the original ones
(because of the fact that filtering the data with a random vector
does not have stong effect on power of the signal). The original
and estimated profiles for different sources are shown in Figure 1.
It can be seen that the estimated profiles have closely followed the
original ones. Accordingly, the source separation performance was
good. Also, we applied the MBD-MFD method and time-frequency
Parra’s method to compare our results with. Generally, the results
for Parra’s method were not as good as the two other methods.
This may be due to common problems of frequency domain BSS
methods. On the other hand, although in MBD-MFD method it is
tried to compensate the blind deconvolution effects (estimating the
separation filters to compensate the deconvolution effect), the results
show that the proposed method has outperformed MBD-MFD method
as well. The superiority of the proposed method is due to the fact that
we have not transferred the time domain signals to any other domain
and also the assumptions made for the algorithm were consistent with
the heart and lung signals.
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Fig. 1: Original and separated profiles (Dk’s) of the source signals.

TABLE I: Measured SIR levels between original and separated
signals using the both methods.

SIR (in dB) Separated heart Separated lung
Proposed method 30.89 21.77
MBD-MFD 21.26 14.81
Parra 12.091 9.32

The separated sources can be estimated by stacking Ŝk = PkDk

matrices. Because of blindly estimation of the channels Aτ s there
are different scaling ambiguities for different lags and this causes the
separated sources to be the filtered versions of the original sources.
Figure 2 shows the normalized original signals, the normalized sep-
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Fig. 2: Original signals on top, convolutive mixtures in the middle,
and separated sources for both methods at the bottom plots.

arated signals using both the MBD-MFD method and our proposed
method, and the mixture signals. Because of having filtered version of
the signals measuring the signal to interference ratio (SIR) has been
done by using BSS EVAL toolbox [19]. Different combinations of
the available heart and lung sounds in [18] are chosen and mixed with
random FIR filters convolutivly. Table I shows the average measured
SIR levels for the three methods over 10 experiments. Since the heart
sound is more sparse in time domain, all the methods have shown
better results for separation of heart sound and the proposed method
has shown much better performance compared with the other methods
(by at least 7dB increase in SIR).

V. CONCLUSIONS

In this paper an orthogonal signal model is defined for source
signals and used to define a signal model for convolutive mixture
signals. The blind source separation as the main objective of the
paper is performed by estimating the parameters of the defined
convolutive mixture model. The sources within each segment and
consequently their profiles are considered orthogonal and the lagged
mixing matrices fixed across segments. These assumptions lead to a
unique and robust solution. This method solves the CBSS problem
in time domain. The separated source signals by this method are
filtered versions of the original sources. To evaluate the performance
of the system some randomly generated mixing channels for different
lags are used to mix the sound signals. The results show the
high performance of the method compared to multichannel blind
deconvolution based method (MBD-MFD) and also time-frequency
based (Parra’s) CBSS methods in achieving higher SIR levels for the
separated heart and lung sounds.
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