
                                           
ABSTRACT 

 
High-speed digital imaging (HSDI) of the larynx provides 
important information on the vocal fold vibrations that are 
closely associated with voice condition. We present an active 
contour (snake)-based algorithm for the automatic delineation 
of the glottis within image sequences captured from an HSDI 
system. The algorithm has three steps: first, a rough 
segmentation is performed by global thresholding, and 
followed by the detection of an ellipse-shaped region that 
approximates the glottal geometry, secondly, parameters of the 
ellipse are estimated using the principal component analysis 
(PCA) method and thirdly, the snake-method is applied using 
the estimated ellipse as an initial contour. The performance of 
the proposed approach is demonstrated through the use of 
clinical samples of the HSDI recordings obtained from subjects 
having both normal and pathological voice conditions. Finally 
the proposed method is compared with existing snake-based 
methods in terms of efficiency and segmentation accuracy. 

Index Terms—High-speed laryngeal imaging, vocal fold 
vibration, active contour, snake 
 

1. INTRODUCTION 
Characteristic analysis of the vocal fold vibration provides an 
important component for understanding the mechanism of 
phonation and for voice assessment. The vocal folds oscillate 
at a frequency of 100Hz-400Hz during normal phonation - the 
emerging HSDI systems that are capable of recording images 
of the glottis at a typical rate of 2000 frame/second is fast 
enough to resolve the actual vibrations of the vocal folds [1-3]. 
Our previous study showed that the area of the glottis extracted 
from laryngeal image sequences can provide valuable 
information on the properties of the vocal fold vibration that 
correlates with the voice quality and health condition [2, 3].  
   The glottal area waveform (GAW) is a plot of the area of the 
vocal fold opening, or glottis, as a function of time. The 
performance of the subsequent GAW analysis depends on the 
accuracy of the GAW extraction, which requires both effective 
and highly efficient method for image segmentation from the 
vast amount of HSDI data. In the past, researchers have 
attempted to develop algorithms for the vocal fold edge 
detection using stroboscopic or HSDI data [3-9]. Manual 
approaches for image segmentation are frequently employed to 
extract  glottis  on  a frame-by-frame basis - this operation may  
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achieve accurate results but at an expense of time. Automatic 
methods developed for  the  glottal  edge detection include 
region-growing [3] and active-contour (snake) methods [6-9]. 
The region-growing algorithm however, depends on an 
accurate selection of a seed-pixel point, while the existing 
active-contour methods are sensitive to noise and moreover, 
the requirement for large iteration places a severe limit to their 
ability to process vast image frames within a reasonable time 
frame. Since active contour methods have been shown to 
perform well in many medical imaging processing applications 
by generating satisfactory object boundary in edge detection 
[10], we elected to direct our approach towards a modification 
and adaptation of the active contour-based algorithm for glottal 
edge detection. As we mentioned earlier, there are two critical 
practical issues that need to be addressed for the application of 
the active-contour method, one is the noise sensitivity, and the 
other is the expensive computational cost. To this end, the 
proposed approach will address these critical issues and 
provide a practical solution to meet the stated challenges.  

2. METHODS 
The selection of an initial curve in the active contour method 
can significantly affect the segmentation results - in most 
cases, the geometry of the glottis can be approximated using an 
ellipse and so we begin by obtaining a rough estimation of the 
initial curve through global threshold segmentation. Next, an 
ellipse-like region is detected and the ellipse parameters are 
estimated using the principal component analysis (PCA) 
method. The ellipse is then drawn as an initial curve. Finally 
the snake is applied to this process. The number of iterations is 
determined by the ellipse fitting error - the greater the fitting 
error, the longer the iteration time is required to achieve 
desired accuracy. For the processing of subsequent image 
frames, the region of interest is searched based on the current 
result, which helps to limit the influence of background noises. 
We will test the proposed method by using HSDI data captured 
from subjects with normal and pathological voice conditions.  

2.1. Procedures for the HSDI recording 

A Kay-Pentax (Lincoln, Park, NJ) high-speed imaging system 
was used to record the laryngeal images. This system acquires 
images at a rate of 2000 frames per second with a spatial 
resolution of 160 × 140 pixels. Several subjects having normal 
and abnormal voice productions were instructed to produce a 
sustained vowel /i/ phonation. The recording time for each 
HSDI record is usually within 2 seconds. 
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2.2. Global thresholding  
Prior to the application of the snake method, we use the 
thresholding to convert initial grey-scale image into a binary 
image. Since the region within the glottis has low intensity, a 
fixed fraction of the maximum intensity in each frame is used 
as the threshold value for a rough segmentation. As illustrated 
in Fig. 1 (b), each image frame can be segmented into two 
regions: the glottis (object), and the remainder (background).  

2.3. Segmentation with snake 
The active contour model introduced by Kass [11] is an 
automatic method for image segmentation. The contour, or 
snake, is represented as a curve, which is guided by external 
forces that pull the snake towards certain features such as lines 
and defined edges. Assume the curve is defined as 

, it will move through the spatial domain 
of the image to minimize the following energy function:                          
           
                     (1) 
Where,   and  represent the first and second derivatives of 

 with respect to , and a is a measure of the snake’s tension 
and  b is a measure of the snake’s rigidity.  is the external 
energy acting on the snake that is determined by the image 
gradient. The minimization procedure is an iterative technique 
using sparse matrix methods and the minimization criterion is 
based on differential calculus [11]. After initializing a curve 
close to the object boundary, the snake starts deforming to fit 
the local minima so as to move toward the desired object 
boundary and finally settles on it.  

The initial contour setting plays an important role in the 
active contour method. Here, we detect an accurate location for 
the first frame (see Fig. 1). Since the strong background with 
similar intensity to the object often appears in the lower half of 
the frame (anterior vocal fold), the projection (integral of the 
intensity profile) along vertical axis (Y-axis) within upper half 
(Fig. 1 (c)) and lower half (Fig. 1 (d)) of the frame are 
calculated and displayed respectively, this is followed by 
multiplication of the two profiles (Fig. 1 (e)) from which the 
peak point can be detected.  To obtain the horizontal (left-
right) opening of the vocal fold, each point from the peak point 
(on the projection curve) to the left and to the right side is 
examined respectively, and the first point from each side 
having a value of less than 1% of the peak value is found and 
taken as the left and right boundary point respectively. 
Similarly, the projection along X-axis (Fig. 1(f)) is obtained 
and the vertical (up-bottom) opening of the vocal fold can be 
obtained; in this case, the secondary peak (Fig. 1(f)) can be 
easily excluded since it is very close to the boundary of the 
image frame and therefore carries no useful information to the 
process. Based on the procedures described above, the ellipse 
curve can be drawn and it then serves as an initial contour (Fig. 
1 (g)). In particular, the pixel with an X-coordinate and Y-
coordinate respectively corresponding to the peak position in 
Fig. 1 (e) and (f) is taken as the center of the ellipse, while the 
length of the major axis ( ) of the ellipse is 
determined by the vertical opening and the minor axis 
( ) by the horizontal opening of the vocal fold.      
      For the processing of subsequent image frames, the ROI is 
selected based on the previous frame (as shown in Fig. 2). 
Assume an image size of H by W pixels, and that the left, right, 
up and bottom range of previous frame is described by leftx, 

rightx, upy and bottomy respectively, the ROI of current frame 
is then set as a rectangular window with its position defined by 
four corner coordinates:  
[ max(leftx-r1,1), max(upy-r2,1)], [max(leftx-r1,1), min(bottom
y +r2,W)],[min(rightx+r1,H),max(upy-r2,1)],and[min(rightx
+r1,H), min(bottomy+r2,W)], where r1 and r2 are selected 
based on the maximum range of the vocal fold movement.  

Let  denote the binary image within the ROI, the 
barycentre coordinates (mx, my) of  is taken as the 
center of the initial ellipse and it can be obtained as follows:         

 

 

Where, Nb is the number of pixels whose value is equal to 1 
within the ROI of the binary image, M and N are the width and 
length of the ROI respectively. Int(x) stands for the nearest 
integer of x.  Next, PCA method is applied to and the 
eigenvalues and eigenvectors are then obtained. The 
parameters  and  of the ellipse can be 
estimated as:        

                   (3) 
 
Where,  and are the maximum and second 
maximum eigenvalue respectively.  
   To determine the number of iterations, a relative fitting error, 
fiterr, is defined and computed as follows: 
                   (4)    
 
Where, is the area that initial ellipse covers, and   

is the rough vocal fold area obtained via 
global threshold within the ROI.  
     The iteration number, itn, is determined adaptively: 

                       (5) 

3. RESULTS 
The proposed method was applied to HSDI recordings from 
both subjects with normal and pathological voice conditions. 
The global threshold value was set as 60% the maximum 
intensity value, and r1 and r2 were set equally to 10 (pixels). 
The segmentation results for both normal and pathological 
ceases are obtained and subsequently the GAW and the 
bilateral vocal fold displacements are obtained (Figs. 3&4). 

To evaluate the performance of the proposed method, we 
applied the snake-based method described in [6] for 
comparisons. In this method, the initialization is performed by 
user interaction for the beginning frame, and for subsequent 
frames, the snake position found in the preceding frame is used 
as the initial position for current frame. The results of analysis 
are shown in Fig. 5. Evidently this method does not work well 
for the HSDI data, this is likely due to the fast vocal-fold 
dynamics that generates a difference between the neighboring 
frames that is too large to be traced by the snake.    
    Next we applied a second snake-based method introduced 
by [7] to the same image data for comparisons. In this method, 
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each image frame is processed independently. We showed that 
the method worked well only in some cases where little 
background is present and with a sufficiently large number of 
iterations. However, since this method does not take into 
account the shape and the position of the glottis, it is sensitive 
to background and often fails to achieve reasonable 
segmentation accuracy in the presence of background even 
with a large number of iteration (Fig. 6). 
    Finally we compared the efficiency of each method used in 
these comparative analyses. With less significant background, 
the method in [7] requires an average of 500 iterations or 
approximately 0.14 seconds to process one image frame. 
Similarly, the method in [6] required 175 iterations or 0.11 
seconds to process one image frame.  In contrast, our method 
requires at most 90 iterations, or approximately 0.02 seconds 
for the same task. Combined previous tracing results and the 
comparisons, evidently our method outperforms both existing 
snake-based methods in terms of segmentation accuracy and 
computational efficiency.   

4. CONCLUSION 
We introduced an improved snake-based method for 
effectively and efficiently tracing the glottis from image 
sequences generated by the HSDI modality. The advantages of 
the new method over the existing methods include; first, it 
utilizes information from the previous image frame to provide 
a rough estimate of the location of the object (glottis) thus to 
avoid adverse influence of the background. Second, the initial 
snake points are set by an ellipse curve with ellipse parameters 
estimated by the PCA method. This process allows one to 
determine an initial contour that approximates the actual 
glottis. Moreover, the computational efficiency of this 
approach is further improved by adaptive determination of 
iteration number based on the ellipse-fitting error.  

In summary, the proposed approach provides significant 
improvement with regard to computational cost and enables 
highly efficient frame-by-frame processing of the vast amount 
of image data that is typical of the HSDI recordings. 

 
          (a)                                               (b)                                              (c)                                             (d) 

         
       (e)                                                   (f)                                             (g)                                                 (h)         

Fig.1. (a), original image frame; (b), binary image after thresholding; (c), y-axis projection within upper-half frame; (d), y-axis projection 
within lower-half frame; (e), multiplication of (c) & (d); (f), projection along x-axis; (g) & (h), initial and final glottis contours               

   
                         (a)                                                     (b)                                                  (c)                                                   (d)                                                       
Fig. 2. Segmentation results and glottis delineation obtained from frame 2: (a) original image; (b) binary image after thresholding; (c) 
defined ROI ; (d) delineated glottis contour.  

     
                                 (a)                                                           (b )                                                   (c)            
Fig. 3 (a) One image frame of the HSDI recording (from normal voicing) showing the location where the vocal fold displacements are 
calculated,  (b) displacement of the left (solid line) and right vocal fold (dotted line)  respectively over 11 vibratory cycles, (c) GAW plot 
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(a)                                                                      (b)       

Fig. 4  Results of analysis obtained from the pathological voice sample:  (a) displacement of the left (solid line) and right (dotted line) vocal 
fold respectively over 10 vibratory cycles, (b) GAW plot over 10 vibratory cycles. 

                       
Fig. 5 Segmentation results from three selected image frames obtained using the snake-based method as described in ref.[6]. 

                       
(a)                                                      (b)                                                                      

Fig. 6 Segmentation results obtained from the same image (first frame in Fig. 5) using method described in ref. [7]: (a) Initial vocal fold 
contour; b) final glottis contour after 500 iterations
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