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ABSTRACT

Spike sorting relies on the ability to establish the temporal

occurrence of action potentials and their relation to specific

neurons. Neural information is intrinsically compressible and

as such suitable for sparse sampling. Potentially, this should

allow for the use of multi-channel recordings, which is partic-

ularly advantageous to improve spike sorting.

In this paper we propose a novel algorithm capable of

sampling neural data at sub-Nyquist rates, yielding the same

performance for spike sorting as traditional schemes.

Index Terms— FRI, spike sorting, sparse sampling

1. INTRODUCTION

Communication between neurons is carried out by action

potentials (spikes) propagating as electrochemical impulses

along the nervous system. Spike sorting is the ability to detect

the temporal occurrence of action potentials and their relation

to specific neurons, helping the analysis of brain activity.

Spike sorting has been shown to be successful at mon-

itoring a limited number of neurons. However, substantial

information in order to study how communication inside the

brain occurs requires the problem to be scaled up. Accord-

ing to Shannon, since spikes typically contain frequencies up

to 8KHz, sampling rates of at least 16KHz are normally re-

quired. This poses fundamental problems for simultaneous

multichannel spike sorting in terms of energy consumption,

computational complexity and hardware demands.

The activity of a neuron can be viewed as a temporal

point process of identical spikes. Furthermore, the firing rate

of neurons is by nature very low and action potentials can

be shown to be approximately sparse in the wavelet domain.

These conditions make neural information suitable to modern

sampling techniques, such as finite rate of innovation (FRI)

sampling [1] or compressed sensing (CS) [2], advocating for

an economic acquisition of information.

In this paper we propose a novel algorithm capable of

sampling and reconstructing neural data at sub-Nyquist rates,
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preserving enough features of the original signal so that spike

sorting is performed equally reliably.

The paper is organised as follows: in the next section we

introduce the motivation for the paper. In Section 3 we ex-

plain the technical background required for the rest of the pa-

per. In Section 4 we describe the modules of our proposed

low-sampling-rate acquisition and reconstruction of neuronal

activity signals. We then show the simulation results in Sec-

tion 5 and conclude in Section 6.

2. SPIKE SORTING

A spike is the electrochemical action potential fired by a neu-

ron for data transmission through the nervous system and their

distinctive signature shapes largely depend on their morphol-

ogy and the recording process. The objective of spike sorting

algorithms is to detect action potentials and identify which

neuron generated them. The vast majority follow three ba-

sic steps. They begin with a spike detection stage, mainly

achieved by voltage thresholding with respect to an estima-

tion of the noise amplitude in the signal. Then, a feature ex-

traction step characterises detected spikes, the main property

looked for among these features being that they present a mul-

timodal distribution that ideally allows to separate spikes fired

by different neurons. Principal Component Analysis (PCA)

and wavelet decomposition have widely been used in the liter-

ature for feature extraction [3–6]. To end, and based on these

features, a clustering step is necessary to relate each spike to

a particular neuron.

Existing algorithms suffer from scalability issues due to

high sampling rates. Neural activity from one neuron has

been shown to be compressible [7, 8] , and as such it is suit-

able for sparse sampling. Reducing the sampling frequency

would imply that large simultaneous extracellular recordings

could be obtained and the additional reliability provided by

multi-channel recordings would be exploited in the sorting.

Improvement in sampling techniques is also crucial to scal-

ing up the recording technologies to hundreds or thousands

of neurons, i.e. to the population sizes really necessary to un-

derstand brain function and to control the next generation of

neuroprostheses.
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3. TECHNICAL BACKGROUND

3.1. Sampling signals with FRI

In [1] Vetterli et al. demonstrated that certain classes of sig-

nals that are characterised by a finite number of degrees of

freedom (signals with finite rate of innovation) can be sam-

pled and perfectly reconstructed using appropriate sampling

schemes. In this section we review the basic scenario, follow-

ing the development as treated in [9].

Assume that x�t� is a stream of K Diracs with ampli-

tudes ak located at instants of time tk smaller than τ sec-

onds, i.e. x�t� �
�K�1

k�0 akδ�t � tk�. Then, the measure-

ments obtained sampling the signal with the kernel ϕ
�
� t

T

�
,

for n � 0, 1, . . . , N � 1, are

yn �

〈
x�t�, ϕ

�
t

T
� n

�〉
�

K�1�
k�0

akϕ

�
tk
T
� n

�
, (1)

where we assume the sampling period is T � τ
N .

In this paper we concentrate on a specific class of kernels,

used in [9], that are able to reproduce exponentials. An expo-

nential reproducing kernel is any function ϕ�t� that satisfies�
n�Z

cm,nϕ�t� n� � eαmt with αm � C, (2)

for a proper choice of coefficients cm,n (see [9]).

Exponential splines (E-Splines) [10] are central to the ex-

ponential reproduction property. An E-Spline βαm
�t� of order

P and parameters αm is able to reproduce the exponentials

eαmt, m � 0, . . . , P ; and so is any composite function of the

form γ�t�� βαm�t� [10].

In the reconstruction scheme of [9] the samples yn are

first combined linearly with the coefficients cm,n to obtain

sm �
N�1�
n�0

cm,nyn � âku
m
k , (3)

for m � 0, . . . , P , and where âk � ake
α0

tk
T and uk � eλ

tk
T .

This follows from the fact that the original signal is a stream

of Diracs and we use αm � α0 � mλ. The values sm are

exponential moments of the continuous-time signal x�t�.
Then, the new pairs of unknowns �âk, uk�

K�1
k�0 can be

retrieved from the power series in (3) using the classical

Prony’s method. The key ingredient is the annihilating filter

hm, which has the property that the roots of its z-transform

ĥ�z� correspond precisely to the locations uk. The filter

annihilates the series sm [9], which can be written in matrix-

vector form as

Sh � 0. (4)

By solving the above system, we find hm and then retrieve uk.

Finally, we obtain the weights ak by solving K consecutive

equations in (3) (note that P 	 2K � 1).

We thus conclude that perfect reconstruction of a stream

of K Diracs is possible with any kernel able to reproduce ex-

ponentials: ϕ�t� � γ�t�� βαm
�t�.

3.2. Modified E-Spline kernels

When noise is present in the acquisition process we do not

have access to the ideal measurements. In contrast, we get the

samples ŷn � yn � εn, which translate into

ŝm � sm �
N�1�
n�0

cm,nεn m � 0, . . . , P. (5)

One way to control how noise affects the measurements

is by designing a specific kernel that can act on (5) through

appropriate coefficients cm,n. In [11] it was shown how to

modify E-Splines in order for the properties of the noise εn to

be preserved in their contribution to the moments sm.

In this paper we make use of the modified E-Spline ker-

nels proposed in [11] to sample the neural signals. We choose

even orders P , for which the parameters αm are purely imag-

inary and equal to jωm � j π
N �2m� P �, m � 0, . . . , P .

4. DESIGN OF THE ALGORITHM

4.1. Modelling the neural signal

The activity of a neuron can be interpreted as a point process

in which roughly the same spike is fired at different instants

of time. Assuming stationary neurons and no bursting exists,

the amplitudes of the spikes are constant for the same neuron.

Thus, the neural signal to be sampled from neuron j can be

thought of as the result of the convolution of its spike shape

with a train of Diracs, i.e. xj�t� � pj�t��
�K�1

k�0 ajδ�t�tj,k�,
where pj�t� is the spike, aj is the constant amplitude and tj,k
are the firing instants. If we consider the contribution of J
different neurons, which add up linearly, we can write the

complete model for the neural signal as x�t� �
�J�1

j�0 xj�t��
n�t�, where n�t� accounts for any source of noise.

For the sake of clarity we assume that contributions do

not overlap. In such a case, we can sequentially retrieve one

pulse after the other and simply write that x�t� � p�t��d�t�,
where p�t� is the pulse shape of the neuron, and d�t� is one

Dirac that represents the amplitude and location of the spike.

4.2. How to extract the information on d�t� given p�t�

The signal x�t� is acquired using an exponential reproducing

kernel as discussed in Section 3.1 leading to the samples yn
as in (1). The Dirac signal d�t� can be retrieved from prior

knowledge on the pulse shape p�t� and the samples yn. If

p�t� is known exactly, then we can write

yn �

〈
x�t�, ϕ

�
t

T
� n

�〉
�

〈
p�t�� d�t�, ϕ

�
t

T
� n

�〉

�

〈
d�t�, ϕp

�
t

T
� n

�〉
, (6)

where now we have an equivalent exponential reproducing

kernel ϕp�t� � ϕ�t�� p���t�.
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Then the locations and amplitudes that characterise d�t�
can be retrieved following the annihilating filter procedure

explained in Section 3.1 but using the new set of moments

spm �
�

n c
p
m,nyn, where cpm,n are the coefficients so that

ϕp�t� satisfies the exponential reproducing formula (2).

4.3. How to extract the information on p�t� given d�t�

It is also possible to estimate the pulse shape with prior

knowledge on d�t� from the samples yn. Consider the expo-

nential moment sm, for which the following holds

sm �
N�1�
n�0

cm,nyn �
N�1�
n�0

cm,n

〈
x�t�, ϕ

�
t

T
� n

�〉

�
〈
x�t�, eαmt

〉
�

�
�

��

x�t�eαmtdt. (7)

Thanks to our choice of parameters αm, (7) is precisely

the Fourier transform (FT) of x�t� at ω � ωm. Therefore, the

moments sm satisfy

sm � x̂ �ωm� � p̂ �ωm� d̂ �ωm� , (8)

where x̂�ω� is the FT of x�t� and ωm � π
N �2m � P �, m �

0, . . . , P . If d�t� is known, it is straightforward to obtain the

FT of p�t� at ωm, m � 0, . . . , P from the moments sm. We

then retrieve the pulse shape via an �1 minimisation as ex-

plained next.

4.4. Spike shape recovery

The aim of this processing block is to reconstruct a finely dis-

cretised version p̃ of p�t� from p̂ �ωm�, m � 0, . . . , P .

Assume p̃ is the pulse shape discretised to a vector of

length L (L � P � and denote with ˜̂p the approximated dis-

crete Fourier transform (DFT) of p̃ obtained from (8). We can

write:
˜̂p � Fp̃� n (9)

where F is the DFT matrix of size �P�1��L, p̃ is known and

is obtained from (8), and n is additive noise used to approxi-

mate any model mismatch. We know that neuronal pulses can

be sparsely described in the wavelet domain. We therefore

rewrite (9) as

˜̂p � FW�1w � n � Aw � n, (10)

where W is the L� L matrix representing the wavelet trans-

form and w �Wp̃ is the wavelet representation of p̃.

The above system is underdetermined but we only need to

search for a sparse vector w that satisfies (10). This modelling

is reminiscent of the traditional CS framework where, in our

context, the acquisition matrix is a ‘fat’ Fourier matrix rather

than a more conventionally used random matrix. We therefore

assume a sufficiently large P and a sufficiently sparse vector

w in order to solve for p̃ using an �1 minimisation technique

such as Basis Pursuit (BP).

4.5. Complete algorithm

In the previous sections it has been shown how N samples are

enough to recover x�t� by breaking down the problem into es-

timating d�t� and p�t� separately. An iterative algorithm can

thus be applied to retrieve x�t� without any prior knowledge.

Assume we initialise the algorithm by setting p�t� � δ�t�,
meaning that at the first iteration the kernel ϕp�t� coincides

with ϕ�t�. The d�t� estimation module will look for the loca-

tion and amplitude of the Dirac, although the signal is actually

a spike. The first estimation of d�t� will therefore be inaccu-

rate, but it is enough to obtain a good estimation of p�t� using

the recovery technique of Sections 4.3 and 4.4. Once there

is useful information of p�t�, it can be used to update ϕp�t�
and the new set of coefficients cpm,n to compute spm. Using

the updated moments the process can be repeated again, the

convergence criterion being a maximum number of iterations

or that a solution within a predefined tolerance is reached.

5. RESULTS

The algorithm has proven to converge experimentally to the

sought pulse shape at the desired location in about 5 itera-

tions for a mean square error (MSE) convergence tolerance of

10�5. The estimation of p�t� is however suboptimal from the

point of view of sparsity in the wavelet domain. The reason

for this is probably that the algorithm is able to find a solu-

tion out of various stable regions in the solution space. One

example of the estimation of x�t� can be seen in Fig. 1.
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(b) Original pulse x�t� and estimated version x̂�t�

Fig. 1. Reconstruction of signal x�t� using the proposed sam-

pling algorithm.

The order P of the E-Spline is a relevant design choice

that influences the performance of the algorithm. Low values

provide better estimation accuracy but high values are able to

capture high resolution details of the spike shapes. We choose

the latter because fine details are relevant for sorting.

Finally, we have assessed the suitability of the sub-

Nyquist sampling algorithm for spike sorting, working with
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Missed spikes False positives Misclassified spikes Unclassified spikes Success Rate
Spike set Noise s.d. 24K C 5.8K F 24K C 5.8K F 24K C 5.8K F 24K C 5.8K F 24K C 5.8K F
Easy (1) 0.05 111 135 0 2 22 21 30 20 83.7 82.2

0.1 93 91 6 9 29 34 9 4 86.3 86.2

0.15 143 129 7 21 50 56 1 2 79.9 79.2

0.2 248 216 1 18 37 44 1 2 71.3 72

Difficult (2) 0.05 140 149 0 0 17 7 70 71 77.3 77.3

0.1 101 80 0 16 418 199 0 16 48.1 69.9

0.15 115 86 1 20 346 454 0 0 53.8 44

0.2 160 108 3 19 441 420 0 0 39.6 45.3

(Av.) 0.125 138.88 124.25 2.24 13.13 170 154.38 13.88 14.38 67.5 69.51

Table 1. Spike sorting comparison for datasets acquired at different rates. C and F stand for classical and FRI sampling respectively.

We measure (i) undetected spikes, (ii) noise detected as spikes, (iii) spikes in the wrong cluster, and (iv) spikes that cannot be identified.

surrogate data available from the NeuroEngineering Lab at

the University of Leicester. Spikes are simulated using a

database of 594 different average action potentials recorded

in the neocortex and basal ganglia. Three distinct spike

shapes are placed at arbitrary times with normalised peak

amplitude of 1 and background noise is generated with a

standard deviation relative to 1 from superimposed spikes

selected at random. Difficulties for sorting mainly come from

similarities among spike shapes, realistic background noise

and overlapping spikes susceptible of generating errors.

We compare the performance achieved feeding the orig-

inal data (@24KHz) and an FRI subsampled version to the

spike sorting algorithm “Wave Clus” [6], estimating a total

of 1000 action potentials. We use N � 31 FRI samples to

represent pulses of length L � 128, and an E-Spline of or-

der P � 30, to achieve a sampling rate reduction by a factor

4. The reconstruction of individual spikes assumes that their

location is known a priori. The results are presented in Ta-

ble 1, and they show that our method is able to preserve the

performance achieved by traditional spike sorting algorithms.

We have noticed that there is a decrease in missed spikes and

an increase in false positives. We believe this is due to the

detection threshold value, chosen proportional to the median

of the absolute value of the recording [6], which is lowered

since the reconstruction process slightly smoothes spikes out.

6. CONCLUSIONS

In this paper, we have proposed an iterative reconstruction al-

gorithm that can estimate a neural signal from FRI samples

that have been obtained using a modified E-Spline at reduced

sampling rates. The design of the algorithm is motivated by

the sparse representation of the neural activity signal. Our

main contribution is that we show that state-of-the-art spike

sorting performances can be reached with a reduction in the

sampling rate of a factor 4 compared to traditional methods.

Future work will analyse MSE spike shape reconstruction re-

sults and compare the proposed method with respect to exist-

ing undersampling spike acquisition techniques.
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