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ABSTRACT
Classification methods have been widely applied in most brain com-

puter interfaces (BCIs) that control devices for better quality of life.

Most existing classification methods for P300-based BCIs extract

features based on temporal structure related to P300 components of

event-related potentials (ERPs). Some others exploit the spatial dis-

tribution of ERPs optimally selected by recursive channel elimina-

tion. However, none of them employed multilinear structures which

exploit hidden features in P300-based BCI data. In this paper, we

propose a new feature extraction method based on tensor decompo-

sition for ERP-based BCIs. The method seeks an optimal feature

subspace simultaneously spanned by temporal and spatial bases, and

additional bases which indicate a variant of ERPs obtained by differ-

ent degrees of polynomial fittings. The proposed method has been

evaluated by both the BCI competition III data set II and the affective

face driven paradigm data set, and achieved 92% and 95% classifi-

cation accuracies respectively, which were better than those of most

existing P300-based BCI algorithms.

Index Terms— Brain-Computer Interface (BCI), P300-

based BCI, facial image, tensor, higher order discriminant analysis

(HODA), electroencephalography (EEG), event-related potentials

(ERPs).

1. INTRODUCTION

Brain-computer interfaces (BCIs) control devices such as

wheelchair by means of brain signals [1]. Feature extraction

and classification of electroencephalography (EEG) signals

are prerequisite for most BCIs such as P300-based BCIs [2]

and event-related desynchronization/synchronization-based

(ERD/ERS-based) BCIs [3]. Since BCIs do not require any

muscle movements, many researchers investigate BCIs for

medical usage such as motor function substitution.

Two major existing approaches have been taken to im-

prove P300-based BCI classification performance. One is to

optimize stimulator by changing its stimuli or the paradigm.

Takano et al. used green/blue flicker [4]. Hoffmann et al.

applied images such as radio, lamp, TV and so on as a

flash by changing its brightness [5]. Another approach is to

apply appropriate feature extraction methods and classifica-

tion techniques. Pires et al. applied Max-SNR beamformer,

Fisher’s criterion beamformer, and the combination of the

two beamformers respectively before the classification by

means of Bayesian classifier [6]. Hoffman et al. showed that

Bayesian LDA can achieve better performance than Fisher’s

LDA [5].

Nevertheless, the existing approaches have not exploited

multilinear structure which expresses a relation between P300

components over channels, or connection between variants

of features. We note that features for classification of P300

signals are characterized by several different modes (dimen-

sions) including samples, channels, flashes, repetitions and

feature types such as low-pass filter and nonlinear regression.

Recently multiway feature extraction has been applied to

ERD/ERS-based BCIs, which is a promising tool for BCIs

[7].

In this research, a novel method to extract multiway fea-

ture is proposed for ERP-based BCIs including P300-based

BCIs. Instead of vectorizing all data, our approach expands

the observed data into high dimensional tensors, and employs

multilinear discriminant analysis methods [7] to find the opti-

mal feature subspace from training P300 signals. Experimen-

tal data set of the BCI competition III data set II [8] and af-

fective face driven paradigm (AFDP) [9] have been analyzed

and we confirmed that our method was valid and achieved

high classification performance for both data sets.

2. FEATURE EXTRACTION FOR P300-BASED BCI

During typical P300-based BCI experiments, a matrix of let-

ters are presented and EEG is recorded when subjects silently

count how many times the indicated target letter is intensified

[10]. A waveform of the target class contains a P300 com-

ponent which has a positive peak that appears approximately

300 ms after a target stimulus (see Fig. 2). Normally, the ob-

served waveforms of the EEG signals are processed 700 ms

time window after a flash, removing base correlation using

100 ms pre-stimulus waveform over multi-channels. Assum-

ing that the interface requires #flashes times intensification

to identify individual letters, and that all the flashes repeated
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(a) Feature matrix (b) Feature tensor

Fig. 1. Feature matrix and feature tensor for P300 detection. (a)

Each row vector of the feature matrix consists of EEG window

recorded from multi-channels, and is labeled as a target or non-

target signal. (b) The observed signals are tensorized into 3-D fea-

ture tensors whose frontal slices are compatible with row vectors

in (a). Additional dimensions can be augmented such as regres-

sions, frequency bins various time-frequency transformations, dic-

tionaries. The tensor features enable us to apply tensor classification

algorithms.

for #repetitions times to average them, there are in total

M = #flashes ×#repetitions waveforms of size T sam-

ples × S channels in an epoch. It is obvious that the number

of samples is large when EEG is recorded with a low sam-

pling frequency (e.g., 240 Hz) and a few channels (e.g., 11

channels). The most common technique to reduce the dimen-

sionality of P300 waveform is to downsample the signals after

applying a moving average filter [5, 11]. The downsampled

data then can be used as features for classification.

Most feature extraction methods for P300 waveform are

based on the temporal structure of P300 component [2, 10],

and they have not yet fully exploited the hidden structure in

ERPs. That is because EEG segments of T samples on S
channels are often concatenated into a long vector T × S
(shown in Fig. 1(a)). We note that spatial information also

affects the P300 detection. For example, we can select domi-

nant channels by a recursive elimination [11].

In this paper, we propose a tensorization and a dimen-

sionality reduction method for P300-based BCIs which ex-

tracts simultaneously dominant temporal and spatial informa-

tion from the training data. In the sequence, we will show that

seeking an optimal feature subspace for multiway samples is

converted to a supervised feature extraction based on tensor

decomposition with additional constraints.

2.1. Tensorization by Data Expansion

Unlike vectorizing waveforms as shown in Fig. 1(a), we

expand the data into high dimensional tensors. The tensoriza-

tion makes the features abundant, and enables us to take

advantage of simultaneous multidimensional decompositions

along all dimensions (modes) for feature extraction, which

showed significant improvement in BCI classification perfor-

mance [7]. In this research, we expanded data into 3-D tensor

by appending a new dimension degrees of polynomial fittings

Fig. 2. Illustration of EEG waveform that contains P300 and its

approximations to polynomial models. The fitting to the degree 11

polynomial model extracts slow waveform while fitting to the degree

14 polynomial yields more oscillations.

(see Fig. 1(b)). Fig. 2 illustrates a raw target EEG waveform,

and its two approximates with degree 11 and 14 polynomials.

The positive or negative peaks of ERPs reflect the cognitive

procedure in human’s brain such as perception of visual stim-

ulus and emotion processing. Since averaged ERP waveform

shows a smooth curve like a polynomial function in a limited

time range, we can approximate data to a polynomial model

by a least square method. The degree of a polynomial decides

how many peaks or how well the system should extract the

signal for the classification.

2.2. Model and Method for Dimensionality Reduction

Consider a set of K multiway samples X (k) ∈ R
T×S×O, k =

1, ...,K which consist of EEG segments of T samples or their

approximations with O degrees in S channels. Each sample

belongs to a non-target class (c = 1) or target class (c = 2),

which have K1 and K2 samples respectively. The model for

dimensionality reduction of multiway samples is expressed as

X (k) ≈ G(k) ×1 T×2 S×3 V, k = 1, ...,K (1)

where ×n denotes the tensor-matrix multiplication along

mode-n [12], basis matrices T ∈ R
T×Rt , S ∈ R

S×Rs

and V ∈ R
O×Ro are projected filters for X (k) along time

(samples), channel and fitting degree. The core tensor

G(k) ∈ R
Rt×Rs×Ro consists of compressed features of X (k)

projected onto the feature subspace spanned by T, S and V.

Our purpose is to estimate projection matrices T, S and V
such that G(k) maximize difference between two classes. In

general, we can maximize the Fisher ratio between the core

tensors G(k) to find the basis factors T, S and V:

ϕ = arg max
T,S,V

∥∥Ḡ1 − Ḡ2

∥∥2
F

K∑
k=1

∥∥∥G(k) − Ḡck

∥∥∥
2

F

, (2)

where ck ∈ {1, 2} denotes the the class indices to which the

k-th training sample X (k) belongs, and assuming that Ic is a
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set of sample indices k in each classes, Ḡc is the mean tensors

of each classes defined as

Ḡc =
1

Kc

∑
k∈Ic

G(k), c = 1, 2. (3)

From eq. (1), the core tensors G(k) can be approximately ex-

pressed by projections:

G(k) = X (k) ×1 T
T ×2 S

T ×3 V
T (4)

= Z(k)
1 ×1 T

T = Z(k)
2 ×2 S

T = Z(k)
3 ×3 V

T.

Noting that

‖G(k) − Ḡck‖2F=tr
[
TT〈Z(k)

1 − Z̄1ck
,Z(k)

1 − Z̄1ck
〉−1

T
]
,

‖Ḡ1 − Ḡ2‖2F=tr
[
TT〈Z̄11 − Z̄12 , Z̄11 − Z̄12〉−1T

]
,

where Z̄1ck
, ck ∈ {1, 2} is the mean tensor defined for Z(k)

1

as in eq. (3), and 〈A,B〉−n denotes the contracted product

between A and B in all modes except for mode-n. Hence, in

order to update T while S and V are fixed, we optimize

ϕ = argmax
T

tr
[
TTSbT

]

tr
[
TTSwT

] , (5)

where

Sb = 〈Z̄11 − Z̄12 , Z̄11 − Z̄12〉−1, (6)

Sw =
K∑

k=1

〈Z(k)
1 − Z̄1ck

,Z(k)
1 − Z̄1ck

〉−1
. (7)

As a consequence, T is Rt leading left generalized eigen-

vectors of the generalized eigenvalue decomposition SwT =
λSb T or Rn leading eigenvector of matrix (Sb−ϕSw) [13].

Similarly, we can alternatively update S and V. This op-

timization problem is related to multilinear discriminant anal-

ysis or high order discriminant analysis (HODA) [7]. Re-

cently, the NFEA toolbox [14] has been developed for super-

vised and unsupervised feature extraction for multiway data

based on tensor decompositions with various constraints in-

cluding HODA. By applying HODA to the given training data

X (k)
train, k = 1, ...,K, we can retrieve the basis factors T, S

and V. The feature tensor G(k) of a test or training data

X (k) is obtained via a simple projection written in eq. (4).

The number of features in X (k) is reduced to Rt × Rs × Ro

entries. In fact, we don’t use all the features for training a

classifier. Only a few significant features are chosen from

among the entire features based on their Fisher scores. The

features extracted from the training waveforms are ready to

train a classifier such as LDA or SVM.

The whole procedures for both training and test stages are

illustrated in Fig. 3. Output values from the classifier are

passed through a P300 decoder to predict an intended letter

in a P300-based BCI.

Fig. 3. Diagram for multiway feature extraction applied to a P300

speller system. (i) Finding basis factors: Decompose a set of K
training tensors with category information (labels) to find 3 basis

factors T, S and V such that eq. (2) is maximized. (ii) Projections:

Compute projections by basis factors T, S and V to project data

tensor onto the feature subspace (test core tensors). Dominant fea-

tures are selected based on Fisher ranking. (iii) Classification: Learn

a classifier by training features. Outputs are posterior probabilities

corresponding to waveforms in one trial which can be passed through

a P300 decoder.

3. SIMULATIONS

The proposed method was applied to the following two ERP-

based BCI data sets. We firstly used BCI competition III, data
set II [8], where the clear P300 components of ERPs were

recorded. We used EEG data trimmed 700 ms after each stim-

ulus onset for 15 repetitions, which contain 11 channel data

(Fz, Fz, P5, Pz, P6, PO7, PO8, FC3, FC4, C3 and C4). We

secondly employed affective face driven paradigm (AFDP)
data set [9], which had ERPs elicited by a facial image pre-

sented in random order [9]. The ERPs of AFDP have multiple

components that contribute to achieve high classification per-
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Table 1. Classification accuracies of ERP-based BCI

Data sets BCI competition III [8] AFDP [9]

Smoothing 89% 92.5%

HODA + regression 92% 95%

formance. The same classification method can be applied for

both data sets. The number of training data Ktrain is 85 and

80 respectively.

We evaluated the following two methods. As for the first

method (smoothing), EEG signals were downsampled to a

sampling rate of 20 Hz. That is, there were only 14 sam-

ples per waveform per channel. Linear discriminant analysis

(LDA) was applied to extract features and classify the data.

Regarding the second method (HODA + regression), EEG

signals were first tensorized by degree 11 and 14 polynomials

for BCI competition III data set II [8], and degree 7, 15 and 21

polynomials for AFDP data set. The same downsampling rate

was applied to reduce the data size. Hence, training data were

3-D tensors X (k) ∈ R
14×11×2, k = 1, . . . , 85 for BCI com-

petition III data set II and X (k) ∈ R
15×8×3, k = 1, . . . , 80

for AFDP data set. The core tensor size were 9× 10× 1 and

15 × 8 × 1 respectively. In fact, we selected a few dominant

features features selected by the Fisher ranking.

For two methods, compressed features were used to train

linear discriminant analysis (LDA). In order to detect in-

tended letters, the same P300 decoder was applied to two

methods: posterior probabilities of the classification result

were averaged over repetitions and the output was identified

by finding the maximum averaged posterior probability.

Accuracies for two methods are given in Table 1. Clas-

sification using features extracted by HODA achieved an ac-

curacy of 92% for BCI competition III data set [8], which is

compatible with that of the second winner for the same data

set. Also the classification with HODA achieved 95% for af-

fective face driven paradigm.

4. DISCUSSION AND CONCLUSIONS

A multilinear discriminant method has been proposed to ex-

tract features for ERP-based BCIs. We confirmed by simu-

lations that our method achieved a 92% and 95% classifica-

tion accuracies respectively for BCI competition III data set

II and face driven paradigm data set. Samples in the exper-

iments are 3-D tensors with extra dimension expressing the

fitting degree. The model can be straightforwardly applied to

higher dimensional tensors when additional dimensions are

appended. In order to choose suitable parameters for poly-

nomial fitting and multilinear discriminant analysis, a set of

validation samples can be used. The validation samples can

be independent of or split out of the training samples. More-

over, elimination of channels for P300 can also be performed

with the validation samples. This might improve the perfor-

mance.
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