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ABSTRACT

This paper proposes an approach to infer neural interactions

from EEG data using a James-Stein estimator of directed

information called shrinkage optimized directed information

assessment (SODA). SODA uses shrinkage regularization on

empirical histograms to deal with the high dimensionality

of multi-channel EEG signals and the small sizes of many

real-world datasets. It is designed to make few a priori as-

sumptions, and can handle both non-linear and non-Gaussian

flows across electrode sites. The use of James-Stein shrink-

age allows the SODA algorithm to achieve higher sensitivity

to directed neural interactions for a given specificity. We aug-

ment this through a central limit theorem-based approach that

can assess the statistical significance of each discovered in-

teraction. When evaluated on brain computer interface EEG

motor activity data the neural decoding obtained using SODA

outperformed several state-of-the-art approaches including

Granger causality, MI, unregularized directed information,

and spatial coherence. Our results show that SODA localizes

30% more directed interactions in regions that are consistent

with Brodmann functional areas of motor activity.

Index Terms— James Stein estimators, information flow,

small sample size, directional interaction graph

1. INTRODUCTION

An extensive body of research focuses on the goal of identify-

ing and classifying brain activity using EEG data. Central to

these efforts is developing an understanding of how the brain

coordinates information processing to achieve specific tasks.

Multiple studies have shown that neural activations in certain

regions of the human brain have strong interactions [1][2][3].

In recent years, directed information (DI) has grown to be a

popular approach to study these interactions. DI provides a

decomposition of the mutual information (MI) between EEG

signals into causal and anti-causal components. It can model

non-linear and non-Gaussian dependencies between different

signals [4], and differs in particular from MI by providing an
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asymmetric function of the time-aggregated feature densities

extracted from pairs of measurement sites.

While DI has been demonstrated to be superior to other

approaches such as Granger causality and MI [4], it is diffi-

cult to estimate in the presence of high dimensionality and

small sample sizes; both issues commonly associated with

real-world multi-channel EEG datasets. These issues can in-

troduce severe bias into unregularized empirical estimates of

MI [5] (and correspondingly DI [6]). In this paper, we ad-

dress this issue by introducing an optimally regularized DI es-

timator. Our approach, shrinkage optimized directed informa-

tion assessment (SODA), uses a shrinkage regularization that

minimizes estimator mean square error and provides asymp-

totic expressions for estimator bias and variance. We describe

a central limit theorem (CLT) that can be used in conjunction

with our SODA approach to assess the statistical significance

of putative interactions across EEG electrode sites, and to re-

duce false discoveries (i.e., false positives). To the best of

our knowledge, this is the first time that such an approach has

been applied for interaction detection in EEG signals.

When evaluated on brain computer interface EEG motor

activity data, the directed information graph discovered by

SODA was consistent with activation of Brodmann areas of

the brain associated with motor function. Compared to un-

regularized DI by Quinn et al [4], and other state-of-the-art

approaches for interaction discovery, SODA had a substan-

tially higher sensitivity to statistically significant information

flows under identical false positive rate constraints.

2. SODA FRAMEWORK FOR EEG

We introduced the general framework underlying SODA

in a recent study on audio-video indexing in multi-modal

databases [6]. Here we cast these ideas into the context of

neural interaction discovery from EEG data, focusing in par-

ticular on the question of how to extend the SODA framework

to assess the statistical significance of each discovered neural

interaction. We start by recalling the fundamental definitions

and properties of DI. Consider two EEG electrodes, Ex and

Ey , placed at positions x and y on the scalp or intracranially,

with Mx and My time points respectively. Denote by Xm

and Ym the temporal feature variables extracted at time m for
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Ex and Ey respectively, and define X(m) = {Xk}m
k=1 and

Y (m) = {Yk}m
k=1. The DI from electrode Ex to electrode Ey

is then a non-symmetric generalization of the MI defined as

DI(Ex → Ey) =
M∑

m=1

I(X(m); Ym|Y (m−1)) (1)

where M = min{Mx,My}, and I(X(m); Ym|Y (m−1)) is the

conditional MI between X(m) and Ym given the past Y (m−1).

The conditional MI can be expressed in terms of joint en-

tropies as H(Xm, Y m−1) − H(Y m−1) − H(Xm, Y m) +
H(Y m). The maximum likelihood (ML) estimator of the

DI is obtained by quantizing the Mx + My dimensional fea-

tures {XMx , Y My and computing estimates of these joint en-

tropies from the empirical histogram {z1, . . . , zpm}, where

p is the number of levels per dimension, zi represents the

frequency within the ith histogram, and m = Mx + My .

Under general conditions, the histogram count vector Z is

multinomial distributed Pθ(Z1 = n1, . . . , Zpm = npm) =
n!∏pm

k=1 nk!

∏pm

k=1 θnk

k , where θ = E[Z]/n = [θ1, . . . , θpm ] is a

unknown vector of cell probabilities and
∑pm

k=1 nk = n with

n corresponding to the number of samples and
∑pm

k=1 θk = 1.

Since the number pm of quantization cells is larger than the

number of trials n, we must compensate for the overfilling

error of the ML estimates of θ. To do this, we apply a James-

Stein shrinkage approach based on shrinking the ML esti-

mator of θ towards a target distribution t = [t1, . . . , tpm+1 ],
which in our work is chosen to be the uniform distribution

consistent with [5]. This results in the regularized ML es-

timator θ̂λ
k = λtk + (1 − λ)θ̂ML

k , where λ ∈ [0, 1] is a

shrinkage coefficient. Following [5], for a given λ, the en-

tropy estimator for a single sample S of an EEG electrode

EX is defined as:Ĥθ̂λ(S) = −n
∑p

k=1 θ̂λ
k log(θ̂λ

k ). However,

unlike the James-Stein entropy estimator [5], for the proposed

James-Stein DI estimator, λ is selected to minimize the MSE

of the estimated DI, denoted by D̂I
λ

= DIθ̂λ(Ex → Ey),
which is expressed as sums and differences of estimated en-

tropies. The following is proven in [6].

Definition: The optimal DI shrinkage parameter λ that mini-

mizes estimator MSE is: λ◦ = arg minλ{
C2

1 + (2C1C2 + T2Σ2T
′
2)/n + O(n−2)

}
.

In the above, C1, C2, T2 and Σ2 are constants that can be es-

timated from the EEG data. The resultant James-Stein DI es-

timator, D̂I
λ◦

(XM → Y M ), is called the SODA estimator.

The SODA estimator satisfies a CLT:

Theorem: Let Φ(x) be the standard normal distribution func-

tion. Then asymptotically in the number of samples, the stan-

dard normal random variable

Pr(
D̂I

λ − E[D̂I
λ
]√

V ar(D̂I
λ
)

≤ α) → Φ(α) . (2)

Due to space limitations, the expressions for the mean and

variance of D̂I
λ

in the theorem are not given here. The theo-

rem will be used to perform significance testing of discovered

directional interactions in the EEG.

In [6], a local version of DI was introduced for tempo-

ral interaction localizations. This is an important step while

studying physiological signals such as the EEG, due to is-

sues related to time warping inherent in these data. Here we

describe this algorithm in the context of EEG. The local DI

is defined similarly to the DI except that for a pair of EEG

signals X and Y , the signals are time shifted and windowed

prior to DI computation. Specifically, let τx ∈ [0,Mx − T ]
and τy ∈ [0,My − T ] be the respective time shift param-

eters, where T is the sliding window width, and denote by

XMx
τx

and Y
My
τy the time shifted sequences. Then the local

DI, DI(XMx
τx

→ Y
My
τy ), defines a surface over τx and τy , and

summation indices range over smaller sets of T time samples.

We use peaks of the local DI surface to detect and localize the

spatial-temporal interactions in pairs of EEG signals.

The overall process for SODA-based interaction discov-

ery in EEG data is as follows: (1) Temporal Alignment:
Align the EEG signals temporally by segmenting the EEG

data according to local DI peak locations. (2) Pairwise DI
and p-value computation: After alignment, calculate the

K × K matrices of SODA estimated DIs and p-values 1 −
Φ

(
D̂ij−μij

σij

)
on these DI estimates. (3) False Discovery

Rate Control: Threshold the DI and p-value matrices to find

interaction regions exhibiting large and statistically signifi-

cant DI. The construction of the interaction graph over the

K EEG electrodes is performed by testing the K × (K − 1)
hypotheses that there is a significant interaction (both direc-

tions) between pairs of electrodes. This is a multiple hypothe-

sis testing problem and we control false discovery rates using

the corrected Benjamini- Hochberg (BH) procedure [7].

3. EXPERIMENTAL RESULTS

The SODA algorithm was applied to a publicly available BCI

EEG motor activity dataset [8]. The EEG consisted of ran-

dom movements of the left and right hand recorded with eyes

closed. The data consisted of multiple data matrices corre-

sponding to multiple activities, where each column of a data

matrix represented one electrode and there were a total of 19

electrodes and 3008 samples in each row. The motor activity

lasted about 6 seconds. The sample rate of the recording was

500Hz. The subject executed 10 classes of movements where

each class contained different trials of the same movement

(e.g., three trials of left hand forward movement, three trials

of left hand backward movement, etc.) The performance of

the SODA-based interaction detected was compared to four

state-of-the art approaches: Granger causality [3], coherency

measure [2], MI [1] and unregularized DI by Quinn et al. [4].

In [2], coherency was defined as normalized cross-spectrum
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between two EEG signals, where only the imaginary part of

the signal was employed. In [1], mutual information was

applied to feature selection for EEG signal classification. In

[4], Quinn et al. utilized unregularized directed information

to capture the non-linear and non-Guassian dependency struc-

ture of spike train recordings. The time sequences were first

divided into segments of 200ms length for feature extraction.

There was 100ms overlap between neighboring segments. We

estimated the joint probability density functions for each seg-

ment of EEG data by first mapping the features to a codebook

by quantization as described in Sec.2. Then we applied the

proposed shrinkage method to the ML estimator. Here the

number of samples n was the total number of trials for all the

subjects performing the same task, and the Lloyd-max quan-

tization level in the scalar quantizer was selected to be 10 for

multinomial distribution.

Interaction Detection and Comparison: Fig. 1 presents a

visual illustration of the DI matrices (expressed as heatmaps)

obtained through SODA for left hand forward movement, left

hand backward movement, and right hand forward movement

respectively. Colors in the heatmaps indicate the magnitudes

for different strengths of interactions between the 19 elec-

trodes. In the interest of space, we discuss the results for

left hand forward movement in more detail below (these re-

sults are representative of other movements). We utilized a

heat kernel to transform the (symmetrized) pairwise DI ma-

trix into the distance matrix and applied K-means clustering

with the number of clusters (3) chosen by setting a thresh-

old to within-cluster sums of point-to-centroid distances. For

left hand forward movement, the three clusters discovered

were (C3, C4, T3, T5), (F4, FP1, FP2) and the rest of elec-

trodes. Mapping the EEG channels into Brodmann areas [9],

we identified cluster (C3, C4, T3, T5) as reflecting auditory

processing such as that associated with detecting a cue to

start motion (Brodmann area 21) and the execution of motor

function (Brodmann area 4). Similarly, we identified cluster

(F4, FP1, FP2) as corresponding to the planning of com-

plex movements (Brodmann area 8) and cognitive branching

(Brodmann area 10). The third cluster corresponded to elec-

trodes that were not very active. The localization accuracy

was highlighted for each heatmap with red numbers in Fig. 1.

In Fig. 1, the order of the electrodes by clustering is T3, T5,

C3, C4, T4, F8, CZ, F7, F3, T6, PZ, P3, P4, O1, O2, FZ,

F4, FP1, FP2 from left to right and from top to bottom.

Fig. 2 compares the neural interaction graph obtained

through SODA with other state-of-the-art approaches. The

interactions shown for SODA are significant at the 5% level

after accounting for multiple hypotheses as described above.

The regions in the brain for Fig. 1 that exhibited the highest

activity match perfectly with the regions in Fig. 2 that have the

densest number of links. Fig. 2 indicates that SODA discov-

ers significantly more new interactions than other approaches,

and that these interactions are significant accordion to statis-

tical tests. For instance, the edges between (FP1 → F4)

and (FP1 → F7) corresponded to adjusted p-values of 0.026

and 0.036 respectively. The results of applying SODA to the

replicates of EEG signals with different trials also indicated

that during these periods, the electrodes FP1, F4 and F7 are

highly interactive and therefore can serve as strong evidence

that the activity was indeed being localized to these elec-

trodes in the brain associated with motor control. Compared

to the unregularized DI [4], SODA has the advantage that it

can control false positive rate more accurately with optimal

shrinkage regularization and its predictions are validated by

neural pathway locations as determined by Brodmann areas.

Consistency Measure: To study the ability of SODA to

uncover interactions that were consistently observed during

the same class of activity, we randomly divided the data into

equal sized training and test sets. SODA was applied to the

training set and the localization consistency was computed by

mapping the detected interactions to the testing set. Table 1

compares the different algorithms for varying false discovery

rates (FDR) including MI, Granger causality where the co-

variance matrix was regularized with Ledoit Wolf shrinkage

method, coherence measure, unregularized DI and SODA.

A localization consistency of 100% means that all interac-

tions discovered on the training set were observed in the test

set. As shown in Table 1, SODA consistently outperformed

other methods over a range of practical FDR thresholds (0.1

to 0.05), with this improvement increasing in particular as

the FDR threshold was lowered. Since the weak dependen-

cies were filtered out and strong dependencies remained with

a lower threshold, false positives were significantly reduced

with SODA. This explains the fundamental reason that SODA

achieved the best performance with the threshold for declar-

ing an edge present corresponding to FDR of level 0.05. Com-

pared to the next best performing method for interaction local-

ization (unregularized DI), SODA improved the localization

consistency by about 5%.

We also assessed localization consistency in terms of in-

teractions within regions of the brain coordinating similar

task related behavior (i.e., as opposed to between all EEG

electrode sites). For an FDR of 0.1, SODA discovered 36

interactions, while 23, 27 and 31 interactions are detected us-

ing MI, CM and unregularized DI. Together, the set of results

presented here demonstrate that SODA is able to both dis-

cover more statistically significant neural interactions from

EEG data, and to discover interactions that are consistent

across multiple observations of the same behavior.

4. CONCLUSIONS

We proposed applying a James-Stein estimator of directed in-

formation, called SODA, for EEG signal interaction detection

and classification based on directed information. We illus-

trated the SODA estimator for EEG signals interaction detec-

tion/localization using a publicly available brain computer in-

terface EEG motor activity database. Our results, relative to
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Fig. 1. Visual illustration of SODA heatmaps with Project

BCI dataset for left hand forward/backward movement and

right hand forward movement, where colors indicate the mag-

nitudes for different strengths of interactions calculated by

SODA between 19 electrodes. SODA is able to detect more

interactions than MI, such as the interactions between FP1
and F7, FP1 and FZ. The red number indicates localiza-

tion accuracy computed by mapping the detection results us-

ing SODA on different replicates of the same class of activity.

FDR 0.1 0.07 0.05

MI 0.641 0.657 0.676

GC 0.653 0.705 0.728

CM 0.657 0.694 0.726

uDI 0.669 0.721 0.743

SODA 0.698 0.755 0.809

Table 1. Comparison of EEG localization consistency for

different levels of significance (FDR thresholds). The con-

sistency is computed by mapping the detection results using

SODA on different replicates and the number of these elec-

trodes that are connected in the MI, GC, CM, uDI and SODA

interaction graphs, determined by thresholding these quanti-

ties at the same FDR level. uDI, CM and GC represents un-

regularized DI, coherence measure and Granger causality.

other state-of-the-art algorithms, show that SODA provides

interaction estimates that are consistent with neural pathway

locations of motor activities as determined by Brodmann area.

We demonstrate that SODA provides better performance as

compared to unregularized DI, MI and coherence measure.
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