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ABSTRACT

This paper investigates how to apply active learning for

the classification of motor imagery electroencephalography

(EEG) signals to boost the performance for small training

size. A new criterion is proposed to select the most repre-

sentative and informative queries. The candidates are firstly

chosen from the samples close to the center of the cluster

that has the highest impurity of classes. A predefined num-

ber of such candidates and classifiers are forwardly buffered.

Subsequently, the query is chosen such that the buffered clas-

sifiers can backward maximize the classification errors on

labeled data. Experimental results conducted on the BCI

competition IV data set IVb show the superior performance

of the proposed active learning scheme, which is on average

5.12% higher in accuracy than that of the passive method by

choosing the training size from 28 to 112.

Index Terms— Active learning, clustering, motor im-

agery EEG signals, cluster impurity, forward-backward error

maximization.

1. INTRODUCTION

Machine learning techniques have been successfully applied

to classify brain signals in brain computer interface, which

provides an effective communication channel between the

paralyzed people and the outside world. The evoked poten-

tial changes of motor imagery can eventually be translated

into commands to operate the external devices [1]-[4]. How

to design an adaptive learning algorithm to fully utilize the

dynamics of the data and the abundant unlabeled data is a

major issue for online implementation [3]. The capability

of achieving good performance for small training set makes

active learning attractive for EEG signal classification. The

goal of active learning is to choose the most informative and

representative samples to boost the performance [5]-[10]. A

general active learning process starts with an initially labeled

data set L={x1, x2, ..., xn} with labels Y ={y1, y2, .., yn},

where Y ∈{0, 1} for two-class classification. Further, there is

an unlabeled data set U={xn+1, xn+2, ..., xn+m}, generally,

n�m. In each iteration, the learning algorithm will pick a

sample xk, where xk∈U based on certain criteria and asked

the oracle to label the sample. The labeled sample is then

put in set L and removed from set U , i.e., L=L
⋃{xk} and

U=U\{xk}, where “
⋃

” and “\” denote the “set union” and

“set minus”, respectively. Basically, there are several ways

to select the query samples. Query by uncertainty selects

those samples close to the decision hyperplane of the current

classifier [6][7][8]. Query by committee chooses the samples

which are assigned to different classes by a committee of

classifiers [5][8]. While Query by error reduction chooses

the samples to minimize errors of the new classifiers [9]. To

build an effective classifier for small training set and to fully

utilize the informative unlabeled data, we propose a novel

criterion to select the query samples by combining query by
committee and query by uncertainty. Specifically, a prede-

fined number of candidates are selected from the centers of

those clusters that have the highest impurity in the forward

direction. The same number of the most recently used clas-

sifiers are buffered in the backward direction. Subsequently,

the query sample is chosen such that the classification errors

for the labeled samples by employing the buffered classifiers

can be maximized.

2. PROPOSED METHODS

2.1. Preprocessing: Filtering and Feature Extraction

Let’s denote the EEG signals as S=(sijk)
nc×nt×nr , where

nc, nt and nr denote the number of channels, samples and tri-

als, respectively. The time segment of 0.5s to 1.5s from onset

of the visual cue is used. The signal is divided into ns overlap-

ping sub-bands ranging from 4Hz to 36Hz, which is filtered

by an mth order low-pass digital Chebyshev Type II filter to

obtain the band-pass filtered signal: E=(esijk)
ns×nc×nt×nr .

The filtered signal is then used to compute Common Spatial

Pattern (CSP) features. CSP decomposes the EEG signal such

that the variances of the new time series are optimal to dis-

criminate the two classes [1][2][4]. Let’s denote Σ1 and Σ2

as the covariance matrices of the band-pass filtered EEG sig-

nal E for the respective motor imagery action.

WTΣ1W = �1 and WTΣ2W = �2 (1)
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where � represents the diagonal. Scaling W such that

�1+�2=I , which can be achieved by solving the gener-

alized eigenvalue problem.

Σ1w = λΣ2w (2)

The large λj corresponds to spatial filter wj that yields high

variance in one motor imagery action and low variance in

another action. Hence, the two task-specific activations can

be differentiated. The resultant filter (wjj)
nc×nc is used to

filter the data in each trial for different sub-bands, which

gives Z̃=wT
jjE

nc×nt . The final CSP features are obtained

by F=log(var(Zp)), where Zp are the first and last m rows

of Z̃, m=1 is selected in implementation. This results in

a feature length of lf=ns×2m for each trial. Hence, the

CSP feature vectors for labeled (L) and unlabeled (U ) sets

are Fjl
(nl×lf ) and Fjl

(nu×lf ), respectively, where nl and nu

denote the number of trials for labeled and unlabeled sets and

l=1,2,...,lf . It is worth noting that the samples in this paper

refer to the trials which are represented by feature vectors.

2.2. Proposed Active Learning Scheme

How to choose the query samples is critical in active learning.

In order to build a classifier to include the most informative

and representative samples, we propose a criterion to firstly

choose the candidates based on the cluster impurity and the

distances from the samples to the centers of the selected clus-

ter. Secondly, we buffer a predefined number of candidates

(Ns) that satisfy the criterion, and the most recent Ns classi-

fiers for each candidate in the forward direction. Finally, the

query sample is chosen such that the classification errors us-

ing the buffered classifiers for the labeled set (including the

buffered candidates) are maximized in the backward direc-

tion. The proposed scheme is hence named as “cluster impu-

rity and forward-backward error maximization-based active

learning (CIFBEM-AL)”, which is illustrated in Fig. 1 and

described as follows.

Fig. 1. Our proposed active learning scheme.

1) Cluster the whole set of samples (Fcsp) into Nc clusters

such that the within cluster errors are minimized. K-means

clustering with Nc=4 is chosen. The indexes of the ith cluster

(Ic(i)) are obtained by

Ic(i) = arg min
Cs

Nc∑
i=1

∑
Fcsp(j)∈Cs(i)

||Fcsp(j)− us(i)||2 (3)

where Cs={Cs(1),Cs(2),...,Cs(Nc)} and us(i) denote the to-

tal set of clusters and the sample mean of the ith cluster; j is

the index of the feature vector Fcsp.

2) Calculate cluster impurity using the labeled samples.

The cluster impurity for the ith cluster is calculated by

Pu(i) =
min(Nc0(i), Nc1(i))

max(Nc0(i), Nc1(i))
(4)

where Nc0(i) and Nc1(i) are defined as the number of sam-

ples that belong to the class with label “0” and the class with

label “1” for the ith cluster, which are given by

Nc0(i) =
∑

j∈Ic(i)

(Y |Y (j) = 0)) (5)

Nc1(i) =
∑

j∈Ic(i)

(Y |Y (j) = 1)) (6)

where Y is the class label and obviously Pu(i)∈[0 1] always

holds.

3) Query cluster selection. The criterion for query cluster

selection is defined as

î = arg max
i

(Pu(i)) (7)

The cluster is chosen such that the cluster impurity for the la-

beled samples is the highest. When this is true, the number of

features from two classes are close to each other for labeled

set. Considering the similarity in the feature vectors distribu-

tions of the same cluster for labeled and unlabeled sets, it is

reasonable to assume that the unlabeled samples in the cluster

would be more uncertain.

4) Query sample selection. The sample that is close to the

center of chosen cluster (Cc(̂i)) is chosen as the candidate,

which is given by

m̂ = arg min
m,m∈U

Ds(Cc(̂i),m) (8)

where Ds(Cc(̂i),m) is the distance between the unlabeled

samples (index: m) to the center of the chosen cluster Cc(̂i),
which is given by

Ds(Cc(̂i),m) = Kg(Fcsp(Cc(̂i)), Fcsp(m)) (9)

where Kg() is the Gaussian kernel function, which is given

by Kg(x, y) = e−||x−y||2/2σ2

, where σ=0.25 is chosen in

implementation.

5) Forward-backward classification error maximization.

A total of Ns candidates are forwardly buffered based on
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steps 1 to 4. The same number of classifiers from the most

recent classifiers for each candidate will be buffered as well.

The idea is to choose the most uncertain samples using the

buffered classifiers. Assume the jth buffered classifier for

sample s(k) is f(Sv(i, j), s(k)), which is given by [10]

f(Sv(i, j), s(k)) = sign(
n∑

j=1

yjαjK(Sv(i, j), s(k))) (10)

where K(Sv(i, j), s(k)) is the kernel matrix defining sim-

ilarity between the candidate s(k) and j-th support vector

Sv(i, j); αj and yj are the coefficients and labels of support

vectors in the form of {±1} for ith classifier, respectively.

The query sample q(k̂) is chosen from the forwardly buffered

Ns samples so that the total classification errors on the la-

beled samples including the buffered candidates (L(k)) using

the buffered Ns classifiers are maximized, which are given by

q(k̂) = argmax
k

||
Ns∑
i=1

L(k)∑
m=1

f(Sv(i, j), s(m))− Y ∗(m)||
(11)

where ||x|| gives the absolute value of x, Y ∗(m) is the la-

bel in the form of {±1}. In this way, the chosen sample is

considered to be the most informative and uncertain.

3. EXPERIMENTAL EVALUATION

Experiments are conducted using BCI competition IV data set

IVb, which contains three bipolar recordings (C3, Cz, and C4)

with a sampling frequency of 250Hz. The cue-based screen-

ing paradigm consists of 160 trials for two classes of motor

imagery of left hand and right hand. A small initially labeled

set of size L=6 is chosen as a starting point and the querying

process is iterated for 10 times, the averaged accuracies are

shown in Fig. 2. It can be observed from the figure, the accu-

racy slowly approaches 100%, 92% and 88% for subjects 4, 7

and 5, respectively. It is close to 85% for subject 8, and 80%

for subjects 1, 6 and 9. While the performance for subjects 2

and 3 is not good which is also true for existing approaches.

To show the efficacy of the proposed CIFBEM-AL learn-

ing method, it is compared with a baseline passive learning

method which is similar to our scheme, i.e., a simplified ver-

sion of FBCSP [1] and SWDCSP [2], namely “sFBSWD”.

However, feature selection in FBCSP and discriminant fre-

quency band selection in SWDCSP are not implemented to

have a fair comparison, considering the facts that no selection

of features, frequency bands, channels and time-segments is

employed in our scheme. A total of 10 runs are conducted to

randomly choose the predefined numbers of training samples

to train the classifier, which is subsequently used to classify

the unlabeled samples for sFBSWD. Similarly, 10 runs are

conducted for our proposed CIFBEM-AL, with the compar-

ison of the average accuracies at pre-defined training sam-

ple sizes for sFBSWD and CIFBEM-AL shown in Table 1.

Note that Support Vector Machines (SVMs) with linear ker-

nel is used as the classifier. Considering the facts that the

classifiers are trained using the same number of samples (L),

it is easily seen from the table that active learning can pick

up more informative and representative samples to build the

classifier. This has led to an increase in accuracy of 1.81%,

4.10%, 5.77%, 5.46%, 5.15% and 2.17% for L=14, 28, 56,

84, 112 and 140, respectively, compared with that of passive

learning methods. The improvement is more significant when

training sample size is small, e.g., an average increase in ac-

curacy of 5.12% is achieved for L=28 to L=112. With the

increase of the training samples, the performance of passive

and active learning algorithms tends to be similar, e.g., when

L=140. A paired sample t-test is conducted on the null hy-

pothesis that difference in the accuracies of active and passive

learning methods is a random sample from a normal distri-

bution with mean 0. The null hypothesis is rejected for all

the training sample sizes with p=0.0021, indicating the sig-

nificance of the accuracy increase using active over passive

learning. This not only demonstrates the efficacy of the pro-

posed active learning scheme but also shows its advantages in

boosting the performance when the training data size is small.

4. CONCLUSIONS

In this paper, we investigate the problem of applying active

learning for the classification of the motor imagery EEG sig-

nals in brain computer interface. Specifically, we address the

problem on how to select the most representative and infor-

mative samples to build the classifier such that the perfor-

mance can be boosted when the training sample size is small.

The samples are firstly clustered and the cluster that has high

impurity is selected. The samples that are close to the center

of chosen clusters are selected as the candidates. A predefined

number of candidates and the most recent classifiers are for-

wardly buffered, subsequently, the candidate that can back-

ward maximize the classification errors on the labeled data

is chosen as the query sample. This ensures the uncertainty

and informativeness of the selected query. Experimental re-

sults conducted using BCI competition IV data set IVb show

that on average the resultant accuracy is 5.12% higher than

that achieved using the passive learning algorithm, when the

training data size varying from 28 to 112. This further demon-

strates the effectiveness of proposed active learning method in

boosting the performance for small training data set.
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Fig. 2. The accuracies achieved by proposed CIFBEM-AL algorithm using BCI Competition IV data set IVb for all the subjects.
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