
LIVER SEGMENTATION USING STRUCTURED SPARSE REPRESENTATIONS

Vimal Singh† Dan Wang† Ahmed H. Tewfik† Bradley J. Erickson�

† University of Texas, Austin, Texas, USA
� Mayo Clinic, Rochester, Minnesota, USA

ABSTRACT

Segmentation of liver from volumetric images forms the basis for
surgical planning required for living donor transplantations and tu-
mor resections surgeries. This paper introduces a novel idea of us-
ing sparse representations of liver shapes in a learned structured dic-
tionary to produce an accurate preliminary segmentation, which is
further evolved using a joint image and shape based level-set frame-
work to obtain the final segmented volume. Structured dictionary for
liver shapes can be learned from an available training dataset. The
proposed approach requires only 3 orthogonal segmented masks as
user-input, which is less than half the number required by current
state-of-the-art interaction-based methods. The increased accuracy
of the preliminary segmentation translates into faster convergence of
the evolution step and highly accurate final segmentations with mean
average symmetric surface distances (ASSD) [1] of (1.03±0.3)mm
when tested on a challenging dataset containing 62 volumes. Our
approach segments a volume on an average of 5 mins and, is 25%
(approx.) faster than comparably performing techniques.

Index Terms— Structured Sparsity, Sparse Representations,
Level-set Evolution, Semi-Automatic Segmentation, Subspace Clus-
tering

1. INTRODUCTION

An accurate liver segmentation method is critical for avoiding donor-
recipient volume mismatches in case of living donor liver transplan-
tation (LDLT) surgeries and in defining the precise course of action
for tumor resection procedures [2]. Liver segmentation is a chal-
lenging task. In abdominal computed tomography (CT) or magnetic
resonance (MR) images, there is little difference in the gray-value
intensities of adjacent tissues. This leads to loss of boundary for
liver in regions close to organs such as: diaphragm, kidney, pan-
creas, stomach, and heart. At such boundary-less regions, segmenta-
tion using simple intensity based heuristic approaches, seed-initiated
region growing techniques and edge-detection based evolution algo-
rithms leak into the surrounding organs and need to be corrected
manually. Due to the limitations of established techniques for liver
segmentation, commonly used systems in clinical practice rely either
on manual segmentations or on tools requiring an expert to segment
the organ correctly. This process is time consuming, tedious and
generally not-reproducible [3]. This paper presents a radically novel
approach to the liver segmentation problem by first producing an ini-
tial accurate segmentation from learned structured sparse represen-
tations of liver surfaces, which is further evolved using a regularized
3D level-set formulation to achieve final segmentation.

Automatic segmentation methods rely on heuristics based as-
sumptions for their initialization, which generally fail in the presence
of pathological structures and result in poor generalization and per-
formance of these methods over varying datasets [4]. On the other

hand, semi-automatic methods require user-input for initialization
which can be used to regularize the underlying evolution techniques
to avoid complete failures resulting in comparatively more robust
and accurate methods than the automatic approaches [4]. In gen-
eral, for semi-automatic approaches there is a trade-off between the
amount of user-interaction employed and the segmentation perfor-
mance (speed and accuracy) that can be achieved. The challenge
is to improve their speed and performance, while keeping the user-
interaction minimal. In this project, a novel approach for recovery
of 3D deformable organs using structured sparse representations is
seamlessly coupled with a simple user-input scheme to achieve vol-
umetric segmentation of organs. The inherent coupling between the
requirements for stable reconstruction of deformable organs using
the proposed sparse representation based approach and, the possi-
bility of acquiring segmentation masks in orthogonal planes allows
for reducing the amount of user-input required to accurately segment
complexly shaped organs like liver. An important point to be noted
is that the domain in which the input is acquired (i.e., the sampling
domain) and the domain in which the shape is approximated (i.e.,
the representation domain) are different in our method.

To the best of our knowledge, the approach presented in [5] is
the current state-of-the-art semi-automatic method and it has been
classified as a medium interaction approach in [4]. This method re-
quires 6-8 orthogonal segmentation masks as user-input and uses ra-
dial basis functions (RBFs) to interpolate a liver estimate from user-
provided masks. As RBFs are smooth functions (low spatial frequen-
cies), the interpolated shape in regions far from input masks is a poor
approximation of the true liver shape. As a result the segmentation
performance of [5] even after an evolution step is sub-optimal and
cannot be used for clinical purposes. The approach presented in [6]
is based on a similar idea of reducing the amount of user-interaction
needed through identification of a Sparse Information Model (SIM)
for liver segmentation. The SIM developed requires the user to pro-
vide binary masks in 5 longitudinal slices and interpolates the re-
maining longitudinal masks from these masks using a linear function
learned through statistical analysis of the training dataset. The per-
formance achieved using the SIM method is better than that of the
methods based on simple active shape models (Principal Component
Analysis) [7], but is poorer than the approach of [5] and far below
the clinical standards.

The main innovation of this project consists of leveraging the
structured sparse representations of liver surfaces to produce an ac-
curate preliminary segmentation of any given liver from CT data.
The approach requires less than half the number of manually se-
lected contours (only 3 binary masks) as user-input compared to
traditional methods [5, 6] and leads to substantially more accurate
initial estimate for the liver shape. The increased accuracy of the ini-
tial segmentation translates into highly accurate final segmentations
computed via level-set methods at ∼25% faster speeds. The rest of
this paper is organized as follows. In section 2, the proposed ap-
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proach is presented in detail. Preliminary results obtained using our
approach over a limited dataset are presented in section 3. Finally,
Section 4 concludes the paper.

2. LIVER SEGMENTATION USING STRUCTURED
SPARSE REPRESENTATIONS

The proposed approach relies on structured sparse representations of
3D deformable organs [8]. Sparse representation of liver shape in a
learned structured dictionary allows for estimating a 3D shape close
to the true liver using limited number of samples. This forms the
premise for our semi-automatic segmentation method requiring low
user-input. Due to the complexity and variability of liver shapes [4],
the initial estimate of the liver is further evolved using a regularized
3D level-set approach to produce clinically actionable liver segmen-
tation. The initial step of our approach provides the following advan-
tages to the underlying evolution framework: (1) it provides a close
initialization, thus guarantees a faster convergence; (2) it allows for
regularization based on user-input and the estimated liver shape to
prevent leakage. Our complete approach as outlined in figure 1, can
be divided into two stages: 1) training stage and, 2) segmentation
stage.

Fig. 1: Segmenting liver using Structured Sparse Representations

2.1. Training Stage

The training stage involves identification of a structured dictionary
for representing possible liver shapes from an available training data
set. The dictionary is learned using spherical harmonic (SH) trans-
form and iterative subspace identification (ISI) method [9]. During
the training stage, all livers in the training data-set are first repre-
sented with SH coefficient vectors in the harmonic domain to remove
high frequency noise and lower the training vector size. Then, the
ISI method is used to identify all low-dimensional subspaces of these
SH representations. Each identified subspace represents a family of
liver shapes and each family member can be expressed as a linear
combination of the basis vectors spanning that subspace. For more
details the reader is referred to [8]. Empirically, larger training data-
set leads to better generalization of the identified dictionary and thus
results in closer initial estimation of the liver shape. Let {Gi}Ji=1

represent the J identified shape subspaces and G denote the learned
structured dictionary obtained by concatenating all Gi. Then, a 3D
liver V residing in the ith subspace Gi can be represented using a

unit-block sparse vector p with low-approximation error as in (1),
where ci are its non-zero description coefficients in Gi.

V ∼= Gi ∗ ci
= G ∗ p

p = [ 0T . . . ci
T . . . 0T ]

T

(1)

Note, the dimension of the descriptor p is far less than the original
surface data dimension due to the low-dimensionality of identified
subspaces {Gi}Ji=1: dim(p) � dim(V).

2.2. Segmentation Stage

The segmentation stage consists of two main steps. The first step
involves identification of the optimal subspace and reconstructing an
estimate of liver shape from limited samples in the identified sub-
space. Estimating the initial shape corresponds to recovering the
structured sparse representation p in (1) by solving the following
over-determined system:

min
p

‖ V −G ∗ p ‖2
s.t.‖ p ‖0,B ≤ 1

(2)

where, ‖ p ‖0,B ≤ 1 represents the unit-block sparsity constraint.
Problem (2) assumes that all liver samples are available. But, since
dim(p) � dim(V), one can do with using small number of 3D
samples only, as long as they contain information for all the needed
coefficients and the over-completeness of the problem is maintained.

Let, Vinput denote such limited sample points and G̃i represent
the sub-matrix obtained from selecting rows in Gi corresponding
to them. Then, estimation of the initial liver using available limited
samples can be reformulated as solving the following minimization
problems:

min
1≤i≤J

‖ Vinput − G̃i ∗ ĉi ‖2 (3)

In the proposed approach, the samples used for recovery correspond
to the boundary contour points of input masks provided by the user,
as shown in Fig. 1. In order to ensure closeness of ĉi to true ci,

it is required to choose sampling locations such that G̃i is well-
conditioned. Empirically, such recovery problems provide a better
fit with more data-knowledge and it has been observed that limited-
samples corresponding to 3 input orthogonal planes result in well-

behaved linear systems, i.e., the conditioning of G̃i is close to that
of Gi. For this reason, 3 segmented masks at the center of liver are
used as the minimum user-input in order to capture as much shape
topology as possible to ensure more accurate estimation of the struc-
tured sparse representations. The initial estimate of liver shape can
be obtained as:

Vestimate = Gi∗ ∗ ĉi∗ (4)

where, i∗ is the active shape-subspace yielding the minimum 2-
norm error at the sampled locations Vinput. Our approach is dif-
ferent from simple active shape model (ASM) based approaches
[7], as the active shape space is represented as a union of multi-
ple dominant low-dimensional subspaces instead of a single high-
dimensional principal component space. Since, there is a direct trade
off between the conditioning of the linear inverse problem (3) and,
the dimensionality of the shape space (Gi), the proposed algorithm
yields more accurate and smooth approximate solutions than ASM
based methods.

The second step of the segmentation stage is to evolve the esti-
mated shape (Vestimate) from the first step into a final segmenta-
tion using a level-set formulation based on the 3D image data. The
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level-set formulation of equation (5) is used, which weighs the user-
input and the estimated shape during evolution to ensure prevention
of leakage into surrounding organs. In (5), φ(x, t) is the embedding
function whose zero level-set corresponds to the evolving surface,
V = {x|φ(x, t) = 0}, I is the non-linearly diffused 3D gray-scale
CT image, g is a stopping function as in [5], “div” is the divergence
operator, δ(x) is a distance function and μ(x) weights the influence
between shape and image components during the evolution. The
spatial position x is omitted in (5) for a simpler notation.

∂φ

∂t
= |∇φ| div

(
(μ (δ) g (∇I) + (1− μ (δ)) δ)

∇φ

|∇φ|
)

(5)

The first term in (5) is the image term which controls smoothness of
the evolving surface and stops it at strong edges. The second term
corresponds to shape evolution, where δ(x) is a distance function of
the evolving surface from the initial liver estimate. μ(x) is a sigmoid
function whose shift and slope is calculated based on the distance
of estimated masks in the previous step corresponding to the user
provided input masks. For more details on the joint image and shape
based evolution, the reader is referred to [5].

3. RESULTS

The proposed method is applied to a combined dataset comprising
of 62 livers acquired from various sources [1, 10]. A variety of dif-
ferent CT scanners were used for acquisition and most images in
these studies were pathologic and included tumors and cysts of dif-
ferent sizes. For all results reported, we randomly pick 5 livers as test
data and the remaining volumes are used for training purpose. This
experiment is repeated multiple times and results are averaged. Seg-
mentation performance is evaluated using reference segmentations
available in the datasets.

Florin Wimmer Proposed
et al. et al. approach

Median(%) 11.5 14.96 10.41
Maximum(%) 17.1 26.09 13.84
Minimum(%) 9.5 9.06 6.96

Table 1: Comparison of the initial liver estimation step using the
symmetric distance (SD) measure.

To evaluate the true innovation of the proposed approach, we
quantify the closeness of the initial liver estimate obtained in the
first step to the actual liver shape using the symmetric distance (SD)
measure (6), as defined in [6] using dice’s coefficient.

SD =

(
1− 2 ∗ |V1 ∩V2|

|V1|+ |V2|
)

(6)

Dice Coefficient is defined as twice the shared information over the
combined cardinalities. Table 1 compares the SD measure obtained
after the initial step for our approach with those of [5, 6]. Three
orthogonal binary segmentation masks at liver center mass are used
to recover the sparse representation in a learned structured dictionary
to obtain an initial liver estimate for the proposed approach and, a
shape is interpolated using linear RBFs based on these masks for the
Wimmer et. al. approach as explained in [5]. Florin et. al. use 5 key
slices in the longitudinal direction to estimate a complete liver from
a learned Sparse Information Model (SIM) [6]. Table 1 illustrates
that our approach identifies a SIM yielding sparser representations

for liver shapes than [6] and, when coupled with optimal samples it
produces estimates closer to true liver than existing state-of-the-art
methods.

Fig. 2 shows the segmentations achieved for two test livers using
the proposed method where the user-input is restricted to 3 masks
as described previously. The first row of Fig. 2 corresponds to a
normal difficult case which is segmented with good accuracy. The
second row shows an example result exhibiting the robustness of
our approach to lesions. Such robustness is attributed to the inno-
vative method of estimating the initial liver using structured sparse
representations. The green contours show the initial shape obtained
at each plane in the first step of the segmentation stage. It can be
observed that the estimates obtained are very close to the reference
segmentation contours, which are shown in red color. The blue con-
tours show the final shape to which our liver estimate evolves us-
ing the level-set formulation presented in Sec. 2.2. To quantify
the segmentation performance, following metrics are used: volu-
metric overlap error (VOE), relative volume difference (RVD), av-
erage symmetric surface distance (ASSD), root mean square sym-
metric surface distance (RMS-SSD) and maximum symmetric sur-
face distance (MSSD). ASSD, RMS-SSD and MSSD are statistical
derivatives of symmetric surface distances (SSD) which are calcu-
lated as follows: border voxels for the final segmentation output and
the reference segmentations are determined. For each voxel along
one border, distance to the closest voxel along the other border is
determined. All these distances for border voxels from both output
and reference segmentations are termed as symmetric surface dis-
tances [1]. Table 2 summarizes the metrics obtained for the proposed
approach and their comparison with state-of-the-art semi-automatic
method of [5] using the results reported in [4] and the average human
segmentation performance as described in [1].

Metric Avg. Wimmer Proposed
human et al. approach

VOE(%) 6.4 8.1 ± 1.1 6.04 ± 1.3
RVD(%) 4.7 6.1 ± 2.6 1.85 ± 1.7

ASSD(mm) 1.0 1.3 ± 0.2 1.03 ± 0.3
RMS-SSD(mm) 1.8 2.2 ± 0.4 1.79 ± 0.4

MSSD(mm) 19.0 18.1 ± 4.6 18.6 ± 4.1
Input (Masks) 6 - 8 3

Run Time (∼ 7 mins) (∼ 5 mins)

Table 2: Comparison of performance metrics for segmentation using
the proposed approach.

Table 2 and Fig. 2 show that the preliminary results of the pro-
posed method over a limited dataset are significantly better than the
performance of Wimmer et. al. method [5], while requiring less than
half the amount of user-interaction. Our complete approach runs
∼25% times faster due to the reduced user-interaction time and, the
faster convergence of the evolution step as it is intialized closer to the
true liver. The proposed approach also performs better than many
state-of-the-art automatic approaches in terms of the mean ASSD
metric (best: 1.37mm) based on a comparison of the performances
as reported in [11].

4. CONCLUSION AND FUTURE WORK

In this paper, a low user-input based two-step semi-automatic liver
segmentation method is presented. Novelty of the proposed method
lies in its first step, where sparse representations of 3D liver shapes in
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Fig. 2: From left to right, a sagittal, a coronal and a transversal slice for two different test livers. Green contours show initial estimate of the
liver shape obtained in the first step of the segmentation stage. Red contours correspond to the reference segmentations and, Blue contours
are the final segmentations to which green contours evolve to.

a learned structured dictionary are used to produce a preliminary seg-
mentation close to the true liver. The inherent coupling between the
requirements for stable recovery using sparse representations and,
the possibility of acquiring segmentation masks in orthogonal direc-
tions allows for obtaining an accurate preliminary segmentation with
as low as 3 masks, half the number of masks required by state-of-the-
art methods [5, 6]. In the second step, the liver estimate is further
evolved using a joint image and shape based level-set formulation to
achieve final segmentation. Preliminary results obtained using the
proposed approach over a limited dataset show that it achieves bet-
ter performance than state-of-the-art semi-automatic and automatic
methods. For future work, more data from different datasets (such
as: MRI) should be included to further improve the performance and
generalization of the proposed approach.
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