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ABSTRACT

This paper explores the use of quadratic mutual information as a

similarity criterion for dense, non-rigid registration of medical im-

ages. Quadratic mutual information between two random variables

has been recently proposed as Euclidean distance between the joint

density and the product of the marginals. It has been shown to have a

smooth sample estimator, that can be computed without having to use

numerical approximation techniques for computing the integral over

densities. In this paper, we derive Euler-Lagrange equations for opti-

mizing quadratic mutual information in a variational framework. We

then obtain a dense deformation field for registering 3D tomography

images. Our results demonstrate the applicability of this criterion for

such a task, and yield ground for further analysis and research.

Index Terms— Information theoretic learning, quadratic mu-

tual information, variational calculus, medical image registration

1. INTRODUCTION

Matching or aligning images is a fundamental problem, and a very

important issue in medical image processing communities. The need

for alignment or registration algorithms arises, for instance, while

comparing medical images taken at different instances in time, that

may get misaligned due to respiratory motion, cardiac motion etc.

Registration is also required when images from multiple acquisition

modalities must be realigned for better fusion of complementary in-

formation [1].

The general framework for registration of images involves learn-

ing the parameters of the transformation between the two images by

optimizing an intensity based similarity measure between the first im-

age and the transformed or warped second image. The class of trans-

formations can be low-dimensional, parametric transforms such as

affine or rigid, or can be more complex parametric models [2]. Varia-

tional methods are quite popular as they can recover a dense displace-

ment field by optimizing a similarity measure over a suitable func-

tional space in a variational framework, allowing it to handle com-

plex, non-rigid transformations. Chefd’hotel and Hermosillo [1, 3]

formulate a variety of similarity measures in such a variational frame-

work.

Mutual information (MI) or relative entropy has been a widely

used cost function for intensity based registration of medical images,

since it was first proposed in [4]. Mutual information is a measure of

∗Work was done while at Siemens Corporate Research, Princeton, NJ,
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dispersion of the joint (2-D) density of the intensities of correspond-

ing voxel pairs in the images. Mutual information is maximized and

dispersion minimized if the two images are geometrically aligned.

The definition of mutual information that is based on Shannon’s

definition of entropy essentially computes the Kullback-Leibler di-

vergence between the joint density and the product of the marginal

densities of the two random variables:

I =

∫
p(i1, i2) log

(
p(i1, i2)

p(i1)p(i2)

)
di (1)

This definition of mutual information requires integrating over the

probability densities. Unless the densities are assumed to be in sim-

ple analytical forms, this integration needs to be approximated using

numerical techniques, which is off-putting for practical applications.

It has been shown by Principe et al. [5] that using alternative

measures of distance/divergence between densities can allow for an-

alytical and exact computation of this integral.

Quadratic Mutual Information - Euclidean Distance (QMI-ED)

between two PDFs is defined by Principe et al. [5] as the Euclidean

distance between the joint and the product of the marginal densities:

IED =

∫
(p(i1, i2)− p(i1)p(i2))

2 di (2)

We use the above definition for computing mutual information be-

tween two CT images, and show that the integral over the image in-

tensities can be analytically computed, without having to use numer-

ical methods for approximating it.

For registering two images, we obtain the warping function be-

tween them by optimizing QMI-ED using a variational approach,

along the lines of [1]. We derive the Euler-Lagrange equations for

QMI-ED, and solve them using a gradient descent strategy, obtaining

a dense, non-linear displacement field that aligns the two images.

In the next section, we briefly describe how the image registration

problem is framed using variational calculus [6, 1]. In Section 3,

we show how QMI-ED can be used in this variational setting, and

derive the Euler-Lagrange equations for it. Section 4 discusses some

implementation details and Section 5 presents some results.

2. VARIATIONAL FRAMEWORK FOR REGISTRATION

Consider two n-dimensional (n = 2, 3) images I1 and I2, defined

over a spatial region Ω (a bounded region of �n). To register the two

images, we look for a function h : Ω → �n assigning to each point
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x in Ω a displacement vector h(x) ∈ �n, such that it minimizes an

energy functional of the form

J (h) = I(h) + αR(h). (3)

The term I(h) measures the dissimilarity between the first image

I1(x) and the warped second image I2(x + h(x)). The term R(h) is

a regularization term designed to penalize fast variations of the func-

tion h. The first variation [6] of J at h in the direction of k (Gateaux

derivative) is defined as,

δkJ (h) = ∂J (h+εk)
∂ε

∣∣∣
ε=0

(4)

The gradient ∇J (h) is defined by requiring the equality

δkJ (h) = 〈∇J (h), k〉 (5)

to hold for every k. If a minimizer h of J exists, then the set of equa-

tions δkJ (h) = 0 must hold for every k, which implies ∇J (h) = 0.

These are called the Euler-Lagrange equations [6] associated with the

energy functional J . Given a particular form of the energy func-

tional, its functional derivative can be obtained by first computing its

Gateaux derivative, and then expressing it in the form of the inner

product of Eqn. 5.

Since an exact analytic solution for the Euler-Lagrange equations

is rarely possible for commonly used energy functionals, the search

for the minimizer is generally done using a gradient descent strategy,

where gradient can be expressed as,

∇J (h) = ∇I(h) + α∇R(h) (6)

The energy functional contains a regularization term that a func-

tion of the Jacobian Dh of the form,

R(h) =
∫
Ω

φ(Dh(x))dx (7)

Hermosillo et al. [1] and Alvarez et al. [7] use a regularization func-

tion φ(.) based on the Nagel and Enkelmann operator [8], which has

an efficient estimation scheme as described in [1, 8]. We use the same

in our implementation.

3. VARIATIONAL GRADIENT FOR QUADRATIC MUTUAL
INFORMATION

We focus our attention in this paper on the first term of the energy gra-

dient (first term in the RHS of Eqn. 6). In particular, we describe how

this gradient can be computed for the quadratic mutual information

criteria, in the variational framework as discussed above.

Let i1 = I1(x), i2 = I2(x + h(x)), i = (i1, i2) and Ih(x) =
[I1(x), I2(x+h(x))]. QMI-ED between I1(x) and the warped image

I2(x + h(x)) is defined as,

IED(h) =

∫
�2

(p(i, h)− p(i1)p(i2, h))2 di (8)

=

∫
�2

p2(i, h)di +
∫
�2

p2(i1)p
2(i2, h)di

−2

∫
�2

p(i, h)p(i1)p(i2, h)di (9)

Let us denote the three terms in the above expression as IED1(h),
IED2(h) and IED3(h), such that IED(h) = IED1(h)+IED2(h)−
IED3(h).

The estimates of probability densities are computed using Parzen

windowing technique as follows,

p(i, h) =
1

|Ω|
∫
Ω

GΣ(Ih(x)− i)dx (10)

p(i1) =
1

|Ω|
∫
Ω

Gσ(I1(x)− i1)dx (11)

p(i2, h) =
1

|Ω|
∫
Ω

Gσ(I2(x + h(x))− i2)dx (12)

where Gσ(.) denotes a Gaussian function with width parameter σ.

We now substitute these non-parametric density estimates back

into each of the three terms of IED(h). The first term, IED1(h),
now becomes,

IED1(h) =
1

|Ω|2
∫
Ω

∫
Ω

∫
�2

GΣ(Ih(x)− i)GΣ(Ih(y)− i)di dxdy

=
1

|Ω|2
∫
Ω

∫
Ω

G2Σ(Ih(x)− Ih(y))dxdy (13)

The above expression is obtained by using the convolution theo-

rem of Gaussians, which states that the convolution of two Gaussian

functions yields another Gaussian with a scaled width parameter. This

property of the Gaussian kernel helps us obtain an exact analytic solu-

tion for the integral over the image intensities, which is not possible in

case of using mutual information as defined using Shannon’s entropy

[5].

The same property can be applied to IED2(h) and IED3(h) as

well, to yield,

IED2(h) =
1

|Ω|4
∫
Ω

∫
Ω

G2σ(I1(x)− I1(y))dxdy (14)

×
∫
Ω

∫
Ω

G2σ(I2(x + h(x))− I2(y + h(y)))dxdy

IED3(h) =
2

|Ω|3
∫
Ω

∫
Ω

∫
Ω

G2σ(I1(x)− I1(y)) (15)

×G2σ(I2(x + h(x))− I2(z + h(z))) dxdydz

We now compute the Gateaux derivative for IED1, IED2 and

IED3. The first variation of IED1 at h in the direction of k is defined

as,

δkIED1(h) = ∂IED1(h+εk)
∂ε

∣∣∣
ε=0

=
−1

σ2|Ω|2
∫
Ω

∫
Ω

G2Σ (Ih(x)− Ih(y)) · [I2(x + h(x))− I2(y + h(y))]

· [∇I2(x + h(x))k(x)−∇I2(y + h(y))k(y)] dxdy

=
−1

σ2|Ω|2
∫
Ω

∫
Ω

G2Σ (Ih(x)− Ih(y)) · [I2(x + h(x))− I2(y + h(y))]

·∇I2(x + h(x))k(x) dxdy

+
1

σ2|Ω|2
∫
Ω

∫
Ω

G2Σ (Ih(x)− Ih(y)) · [I2(x + h(x))− I2(y + h(y))]

·∇I2(y + h(y))k(y) dxdy (16)

By interchanging the x and y variables in the second term of the RHS

above, and by using the fact that the Gaussian kernel is symmetric,

we can write δkIED1(h) in an inner product form as,

δkIED1(h) =
∫
Ω

k(x)F1(x)dx (17)
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where,

F1(x) =
−2

σ2|Ω|2 · ∇I2(x + h(x))
∫
Ω

G2Σ (Ih(x)− Ih(y))

· [I2(x + h(x))− I2(y + h(y))] dy (18)

Using similar algebraic manipulations for computing the first varia-

tion of IED2, we get,

δkIED2(h) = ∂IED2(h+εk)
∂ε

∣∣∣
ε=0

=

∫
Ω

k(x)F2(x)dx (19)

where

F2(x) = C2 · −2

σ2|Ω|2 · ∇I2(x + h(x))

×
∫
Ω

G2σ(I2(x + h(x))− I2(y + h(y)))

· [I2(x + h(x))− I2(y + h(y))] dy (20)

and

C2 =
1

|Ω|2
∫
Ω

∫
Ω

G2σ(I1(x)− I1(y))dxdy (21)

Similarly, after some algebraic manipulations (not shown here due to

space constraints), we can express the Gateaux derivative of IED3(h)
as the following inner product:

δkIED3(h) = ∂IED3(h+εk)
∂ε

∣∣∣
ε=0

=

∫
Ω

k(x)F3(x)dx (22)

where

F3(x) =
−2

σ2|Ω|3 · ∇I2(x + h(x))

×
∫
Ω

[A(x) +A(z)] ·G2σ(I2(x + h(x))− I2(z + h(z)))

· [I2(x + h(x))− I2(z + h(z))] dz (23)

and

A(x) =
∫
Ω

G2σ(I1(x)− I1(y))dy. (24)

Therefore, using Eqns. 17, 19 and 22, the variational gradient

∇IED(h) is given by,

∇IED(h)(x) = F1(x) + F2(x)− F3(x), (25)

where F1(x), F2(x) and F3(x) are defined by Eqns. 18, 20 and 23.

4. IMPLEMENTATION DETAILS

To summarize, the proposed algorithm involves the following steps

to compute the optimal warping function h(x), to register the images

I1(x) and I2(x + h(x)): For each location x, we first evaluate the

gradient components F1(x), F2(x) and F3(x) using Eqns. 18, 20 and

23. We then use Eqn. 25 to obtain the gradient ∇IED(h)(x) of the

QMI-ED functional. We then update the warping function h(x) using

gradient descent steps as follows:

h+(x) = h(x)− μ∇J (h)(x)
= h(x)− μ [∇IED(h)(x) + α∇R(h)(x)] (26)

where the regularization functional R(h) is as described in Section 2.

Each of F1(x), F2(x) and F3(x) are essentially weighted sums

of Gaussian evaluations. In our implementation, we leverage on the

computational speed up provided by the Fast Gauss Transform [9] as

suggested in [5], for computing these expressions.

Our algorithm requires selecting a kernel size parameter σ for

computing the Gaussian evaluations. A detailed study of the effects

of the kernel size can be found in [10, 5]. For our registration appli-

cation, the kernel size was set to unity, after normalizing the image

intensities to have unit variance.

To avoid local optima and for faster convergence, a coarse-to-

fine approach is used for the optimization procedure, wherein warping

function is first computed on a subsampled (coarse) version of the

original volume, and the estimates are refined by using successively

higher resolutions. Three levels of such a pyramid approach were

used with 16, 8 and 2 iterations in each level.

5. EXPERIMENTS AND RESULTS

Before applying the proposed variational framework for registering

images, we first run some simple experiments to study the response

surface of the QMI-ED cost function, using synthetic data. We com-

pute QMI-ED between a sine function and a translated/displaced ver-

sion of itself, under additive noise, and plot the cost function value for

different values of the displacement parameter. Fig. 1 compares the

response surfaces obtained with QMI-ED and the conventional mu-

tual information (MI) of Eqn. 1, for different additive noise levels.

Clearly, QMI-ED is a much smoother cost function to optimize under

noisy conditions, and better suited for gradient based optimization as

compared to conventional MI.
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Fig. 1. A comparison of the response surfaces obtained using QMI-

ED and conventional mutual information (MI), while registering dis-

placed sin functions under different levels of additive noise.

We now test our variational algorithm for registering dual energy

computerized tomography (CT) images of human abdominal region.

We test on two image pairs. Each unregistered pair consists of a base
image, and a floating image which needs to be warped to align with

the base image. Each image is a 3D volume composed of 5123 vox-

els. The unregistered images have been obtained using different CT

energy levels, and are misaligned due to patient movements etc.

Figs. 2 and 3 show our registration results. Fig. 2(a) shows the

unregistered volumes (base and floating) in a checkerboard view (al-

ternate square patches from the two volumes). Misalignment can be

seen upon zooming in along the edges. Fig. 2(b) shows the checker-

board view of the registered volumes (base and output). The mis-

alignments have been corrected.

Fig. 2(c) shows the image of voxel-wise intensity difference be-

tween the unregistered volumes. Fig. 2(d) shows the difference im-

age computed from the registered volumes. The registered images

produce a smoother difference image.

Fig. 3 shows results on the second image pair, along the saggi-

tal view of the volumes. Again, the misalignment that is seen along
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(a) Floating-Base checkerboard (b) Output-Base checkerboard (c) Floating-Base difference (d) Output-Base difference

Fig. 2. Test Image 1 (Axial view) - (a) Checkerboard image of the two unregistered volumes, obtained by interleaving alternate square patches

extracted from the floating and base volumes. (b) Checkerboard image of the registered volumes. (c) Voxel-wise intensity difference between

the unregistered volumes. (d) Difference image obtained after registration.

(a) Floating-Base checkerboard (b) Output-Base checkerboard (c) Floating-Base difference (d) Output-Base difference

Fig. 3. Test Image 2 (Saggital view) - (a) Checkerboard image of the unregistered volumes. (b) Checkerboard image of the registered volumes.

(c) Voxel-wise intensity difference between the unregistered volumes. (d) Difference image obtained after registration.

body contours in Fig. 3(a) is corrected in Fig. 3(b). The differ-

ence image obtained from the registered volumes (Fig. 3(d)) is also

much smoother than that obtained with the unregistered volumes (Fig.

3(c)), indicating the effectiveness of the registration procedure.

6. CONCLUSION

In this paper, we have presented a variational approach for optimizing

quadratic mutual information, and have applied it for dense, nonrigid

registration of CT volumes. QMI-ED has the appeal that it does not

require numerically approximating integrals over probability densi-

ties, and is a smoother function for optimization as compared to con-

ventional MI, particularly in presense of noise. It has been applied in

a variety of signal processing and machine learning applications such

as robust ICA and non-linear feature extraction [5] etc. This paper

extends its applicability to image registration by presenting a varia-

tional scheme for optimization. We have obtained promising results

which yield fertile ground for further study and analysis.
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