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ABSTRACT

We address the problem of phase retrieval, which is frequently en-

countered in optical imaging. The measured quantity is the magni-

tude of the Fourier spectrum of a function (in optics, the function is

also referred to as an object). The goal is to recover the object based

on the magnitude measurements. In doing so, the standard assump-

tions are that the object is compactly supported and positive. In this

paper, we consider objects that admit a sparse representation in some

orthonormal basis. We develop a variant of the Fienup algorithm to

incorporate the condition of sparsity and to successively estimate

and refine the phase starting from the magnitude measurements. We

show that the proposed iterative algorithm possesses Cauchy conver-

gence properties. As far as the modality is concerned, we work with

measurements obtained using a frequency-domain optical-coherence

tomography experimental setup. The experimental results on real

measured data show that the proposed technique exhibits good re-

construction performance even with fewer coefficients taken into ac-

count for reconstruction. It also suppresses the autocorrelation arti-

facts to a significant extent since it estimates the phase accurately.

Index Terms— Sparsity, Phase retrieval, Optical Coherence To-

mography, Fienup iterations.

1. INTRODUCTION

In imaging modalities such as electron microscopy, crystallography,

astronomy, coherence tomography, and wavefront sensing, measure-

ments of a complex-valued signal are made with sensors that can

capture only the intensity. These magnitude-only measurements are

acceptable for applications such as digital photography. However in

imaging applications, the phase of the object carries critical infor-

mation. In most diffraction-limited imaging applications, the object

diffraction pattern closely approximates its Fourier spectrum. The

measurement is actually the intensity or the magnitude of the Fourier

spectrum. From the magnitude spectrum, one is required to estimate

and reconstruct the phase of the object, based on some assumptions

on the object. This, in a nutshell, is the basic problem definition of

phase retrieval. Therefore, phase retrieval is essentially an inverse
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problem. Some of the first solutions for the problem were proposed

by Fienup [1] and Gerchberg-Saxton [2, 3]. Quatieri et al. [4] de-

veloped iterative algorithms for reconstructing a minimum-phase

sequence from the magnitude of its Fourier transform, where the

iterations involve repeated application of the causality constraint in

the time domain.

Fienup and Gerchberg-Saxton algorithms are iterative tech-

niques. The starting point is the Fourier magnitude spectrum and

the initial phase is assumed to be random/all-zero. Within each

iteration, the measurement is inverted to obtain an estimate of the

object. Then, the object-domain conditions are imposed. The often-

employed constraint is that the object has compact support and in

some cases, that it is also positive-valued. These conditions en-

able a better estimate of the phase. The new phase estimate is then

coupled with the measured magnitude spectrum and the iterations

are repeated all over, until convergence is achieved. In this pa-

per, we impose sparsity conditions on the object to be recovered,

that is, the object is assumed to admit a sparse representation in

some suitably chosen orthonormal basis. This is a reasonably valid

constraint for most practical objects. We modify the Fienup algo-

rithm to incorporate the sparsity condition as well. We then address

the issue of convergence and show that by retaining the K largest

transform coefficients in every iteration, the reconstruction error is

non-increasing and therefore certainly reaches a stagnation point.

This aspect is verified both theoretically and experimentally.

For the imaging modality, we consider frequency-domain optical-

coherence tomography (FDOCT), which is an efficient interfero-

metric technique that is suitable for noninvasive three-dimensional

imaging of biological specimens. Typically, one can achieve mil-

limeter penetration depths with micrometer-range axial resolution.

The primary medical applications of FDOCT are tissue imaging,

dermatology, and ophthalmology. It is known that in FDOCT, the

measurement is the intensity of the Fourier transform of the sum of

the object and reference waves. The object wave is a combination of

backscattered waves coming from the interfaces between layers (cor-

responding to changes in refractive index values across layers). The

goal is to reconstruct the object wave from the magnitude spectrum.

Direct inversion is known to lead to the so-called autocorrelation
artifacts [5], which may be particularly disturbing for visualizing

some specimens. An iterative phase-retrieval algorithm would be an

ideal tool to progressively reconstruct the object from the measure-

ment by successively refining the phase estimate. Such a technique

would also potentially suppress the autocorrelation artifacts.
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1.1. Review of some recent literature

There has been some recent work on addressing the phase retrieval

problem within the framework of sparsity. Moravec et al. [6] made

seminal contributions by considering the phase retrieval problem

within the framework of Compressive Sensing. They consider a

magnitude-only compressive sensing approach and derive sufficient

conditions for accurate signal recovery. Essentially, they rely on a

signal’s compressibility rather than its support to reconstruct it from

the Fourier transform magnitude measurements. Another recent re-

lated contribution is that of sparse spectral factorization developed

by Yu and Vetterli [7]. They address the problem of recovering a

signal from its autocorrelation, which plays a critical role in X-ray

crystallography. They present a sufficient condition for the recov-

ery technique to give rise to a solution that is unique up to a sign

change, time-shift, and time-reversal. In this paper, we do not con-

sider a Compressive Sensing scenario. Instead we rely on standard

measurements that are obtained with an existing experimental setup,

but enforce the sparsity condition in the reconstruction technique.

We do not assume a rational transfer function model for the signal

generation. Therefore, our technique is nonparametric.

1.2. Organization of the paper

In Section 2, we give an overview of the FDOCT signal acquisition

approach and present the signal model. In Section 3, we formulate

the inverse problem in the framework of sparsity. In Section 4, we

propose a Fienup-type iterative algorithm for reconstructing the sig-

nal from the FDOCT measurements. In Section 5, we show results

on synthesized as well as real FDOCT data. We also present com-

parisons with the standard Fourier inversion method and show that

the proposed technique yields tomograms with lower background

noise levels. It also suppresses the autocorrelation artifacts since it

estimates the phase accurately.

2. FDOCT SIGNAL ACQUISITION AND MODEL

In Figure 1, we show a Michelson interferometer-based FDOCT

setup. The output of a broadband light source is split into two beams,

one directed towards a mirror (which generates the reference signal)

and the other towards an object. The light reflected from the ob-

ject is primarily due to the refractive index changes at interfaces of

layers within the object. The reference and object waves interfere

and the resulting interference pattern magnitude is measured by the

spectrometer. For three-dimensional imaging, it is necessary to scan

the sample laterally.

Let f(z) denote the amplitude of the light field generated due to

scattering by the object, as a function of depth z. The spectrometer

measurements are a function of the wavelength, but they are subse-

quently mapped onto the wavenumber k = 2π/λ. In terms of the

frequency variable ω = −2kn, we can express the measurements as

I(ω) = S(ω)

∣∣∣∣1 +
∫ ∞

−∞
f(z)e−jωzdz

∣∣∣∣
2

, (1)

where S(ω) is the source power spectrum. The FDOCT inverse

problem can now be formulated explicitly as the task of comput-

ing f(z) given I(ω) and S(ω), which is equivalent to retrieving the

phase of δ(z)+f(z) (where δ(z) denotes the unit impulse function)
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Fig. 1. Schematic of the FDOCT setup.

given the measurements of the square of its Fourier magnitude spec-

trum. Note that ω is discrete since the measurements are taken only

at a discrete set of wavelengths.

3. PROBLEM FORMULATION WITHIN SPARSITY
FRAMEWORK

Let f be an N -dimensional signal that is sparse in basis Ψ, where

Ψ is an N ×N orthonormal matrix. That is, we can write f = Ψa,

where a has only few non-zero entries. Let supp(a) ={i: a(i) �= 0}
be the support of a and |supp(a)| = K, that is, a is a K-sparse vec-

tor. Let Φ be the N ×N DFT matrix. Then, the DFT of the signal f
is given by F = Φf . Now, given only the magnitudes of the entries

of F, we would like to estimate the phase and thereby the original

signal f .

Let f(n) denote the n-th entry of the vector f . Since the sig-

nal with entries f(n), and that with entries ±f(n ± m) have same

Fourier magnitude for any integer m, any phase retrieval algorithm

will only be able to recover the sequence up to this indeterminacy.

4. PROPOSED PHASE RETRIEVAL ALGORITHM

Next, we present the new algorithm for phase retrieval. The algo-

rithm starts with an all-zero initialization of the phase and in each

iteration, the inverse Fourier transform is computed and we find

the best K-sparse representation in the orthonormal basis Ψ. The

Fourier transform of the K-sparse approximation is then computed

to obtain the refined phase estimate. This procedure is repeated until

convergence is achieved. The analysis for the convergence perfor-

mance of the new algorithm is given in the appendix. The conver-

gence analysis is carried out on the mean-square error (MSE) mea-

sure proposed by Fienup for phase retrieval problems:

Ek =
1

N

N−1∑
�=0

(|Fk(�)| − |F (�)|)2 , (2)

where � denotes the frequency index, Fk(�) is the Fourier spectrum

(discrete-time Fourier transform) of the estimated sparse signal after

the kth iteration. We have been able to show that this error measure

is non-increasing with iterations, which implies Cauchy convergence

and guarantees that the iterations do not result in diverging estimates,
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Algorithm 1 To recover a signal f , which is K-sparse in basis Ψ,

given only the magnitudes of the entries of F, where F = Φf .

Step 1: Initialize k ← 0, φk(�) ← 0 for � =
0, 1, 2, · · · , (N − 1), set the error threshold ε.
Step 2: Compute Fk(�) = |Fk(�)| exp(jφk(�)) =
F{fk(n)}, where F is the DFT operator.

Step 3: Find F ′
k(�) = |F (�)| exp(jφk(�)).

Step 4: Find f ′
k(n) = F

−1{F ′
k(�)} for n =

0, 1, 2, · · · , (N − 1), where F
−1 is the inverse DFT op-

erator.

Step 5: Calculate a′k = Ψ−1f ′k. Obtain ak+1 =

arg min
a∈S
||a− a′k||2 by keeping only the first K largest en-

tries in a′k and setting other entries equal to zero, where

S = {f : |supp(f)|=K}.
Step 6: Find fk+1 = Ψak+1. Compute F{fk+1(n)} =
|Fk+1(�)| exp(jφk+1(�)).

Step 7: Set k ← k + 1. If Ek = 1
N

∑N−1
�=0 [|Fk(�)| −

|F (�)|]2 ≤ ε, terminate, else go to step 2.

irrespective of the initialization. Similar convergence behavior was

found to hold for the original Fienup and Gerchberg-Saxton algo-

rithms.

5. SIMULATION RESULTS

We present results on simulated as well as real FDOCT data. Since

the FDOCT signal essentially contains a combination of backscat-

tered signals, which arise only when there is a change in refractive

index across layers, the FDOCT signal is already sparse in the spa-

tial domain. Therefore, for the FDOCT case, it is valid to consider

Ψ = I, which is the N × N identity matrix. It must be noted that

the proposed algorithm (cf. Section 4) is valid for any orthonormal

Ψ in general.

5.1. Synthesized data

Based on the above motivation, we have generated the sparse sig-

nal by randomly choosing K locations for the non-zero entries from

the N possible locations and the magnitudes of the non-zero entries

are taken to be random samples of a zero-mean Gaussian distributed

random variable with unity variance. We conduct four different ex-

periments with different values of N and K. The sparse signals are

reconstructed from their Fourier spectrum magnitude by using the

proposed algorithm. The mean-square error is analyzed in each case

as a function of the number of iterations. These results are shown

in Figure 2. We observe that the error decreases with increase in

number of iterations. In some instances of the simulation, we found

that the MSE stagnates after some iterations, whereas in some other

instances, the MSE continued to decrease although marginally after

sufficient iterations.

5.2. Experimental FDOCT data

The experimental configuration is the same as that employed in [5].

We briefly recall the critical parameters. A Ti-Sapphire laser with

wavelength λ0 = 800 nm and bandwidth Δλ = 135 nm has been
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Fig. 2. Convergence performance of the proposed algorithm: MSE

versus number of iterations

used as the light source. The beam is collimated using a lens with

focal length 8.2 mm and is split in reference and sample arms. The

power at the sample is approximately 3 mW, the axial resolution in

air is 3 μm and the lateral resolution is 1.3 μm. The integration time

is 43 μs and the line rate is 5 kHz. The number of samples in a mea-

surement is 2048.

We have demonstrated the performance of our method on two

specimens: (i) a glass sample with three interfaces and (ii) an onion-

peel sample. We also compare the reconstructions with the stan-

dard Fourier technique after applying the so-called background sub-
traction. Our technique does not need the background subtraction

step. The results are shown in Figure 3. The reconstruction with the

proposed technique has been made assuming a small sparsity level

K = 320, which is much smaller compared with the number of mea-

surements (2048 in this case). We observe that the proposed phase

retrieval technique yields tomograms with relatively higher signal-

to-noise ratio (SNR). We have shown an extended dynamic range

to illustrate this point. In addition, we observe from Figures 3(c)

and (d) that the autocorrelation artifacts are also suppressed. If the

sparsity level is increased, going by the error metric in (4), one can

expect an improvement in reconstruction quality.

6. CONCLUSION

We have proposed a Fienup-type algorithm to incorporate the con-

straint of sparsity by iteratively estimating the Fourier phase from

the Fourier magnitude for signals that admit a sparse representation

in a suitably chosen orthonormal basis. The key aspect of our al-

gorithm is that the sparsity condition is applied in each iteration by

retaining only the K coefficients with largest magnitudes and set-

ting others equal to zero and thus refining the estimate of the phase.

This allows us to have variable support in each iteration unlike the

standard phase retrieval methods in the literature. We do not con-

strain the signal model to be of the rational transfer function type.

We have also analyzed the convergence properties of the algorithm.

On the application front, we considered FDOCT and showed that the
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Fig. 3. Comparison of reconstruction performance for onion-peel

and glass specimen data, respectively; (a) and (c) correspond to the

proposed phase retrieval technique with a sparsity level K = 320;

(b) and (d) correspond to the standard Fourier reconstruction tech-

nique.

proposed method yields better quality tomograms than the standard

Fourier technique even with a low sparsity level.

Appendix: Proof of Convergence
Consider Ek, the error in k-th iteration:

Ek =
1

N

N−1∑
�=0

[|Fk(�)| − |F (�)|]2 =
1

N

N−1∑
�=0

[|Fk(�)| − |F ′
k(�)|]2,

since |F ′
k(�)| = |F (�)|, ∀k. Note that |F (�)| is the observed Fourier

magnitude. Both Fk(�) and F ′
k(�) have same phase φk(�) (follows

from Step 3 of the algorithm) and hence we write that

Ek =
1

N

N−1∑
�=0

[|Fk(�)| − |F ′
k(�)|]2

=
1

N

N−1∑
�=0

|Fk(�)− F ′
k(�)|2 =

N−1∑
n=0

|fk(n)− f ′
k(n)|2,

where the last equality follows from Parseval’s theorem. We then

use the fact that f = Ψa and that Ψ is orthonormal. This implies

N−1∑
n=0

|fk(n)− f ′
k(n)|2 =

N−1∑
n=0

|ak(n)− a′
k(n)|2,

which leads to the inequality

Ek =

N−1∑
n=0

|ak(n)− a′
k(n)|2 ≥

N−1∑
n=0

|ak+1(n)− a′
k(n)|2. (3)

The above inequality is a direct consequence of the following ob-

servation: ak+1 is the best possible K-sparse approximation to a′
k

(because it is formed by retaining the K largest entries in a′
k and set-

ting others to zero) and ak is also a K-sparse vector. In other words,

if S = {f : |supp(f)|=K}, we have that

ak+1 = arg min
a∈S

||a− a′
k||2 = arg min

a∈S

N−1∑
n=0

|a(n)− a′
k(n)|2.

Since ak ∈ S , we have the inequality

N−1∑
n=0

|ak(n)− a′
k(n)|2 ≥

N−1∑
n=0

|ak+1(n)− a′
k(n)|2. (4)

since Ψ is orthonormal, by Parseval property we have

N−1∑
n=0

|ak+1(n)− a′
k(n)|2 =

N−1∑
n=0

|fk+1(n)− f ′
k(n)|2. (5)

Therefore, we get the following:

N−1∑
n=0

|fk+1(n)− f ′
k(n)|2 =

1

N

N−1∑
�=0

|Fk+1(�)− F ′
k(�)|2

≥ 1

N

N−1∑
�=0

[|Fk+1(�)| − |F ′
k(�)|]2

=
1

N

N−1∑
�=0

[|Fk+1(�)| − |F (�)|]2

= Ek+1,

where the above inequality follows as a direct consequence of the

triangle inequality. Hence, we have Ek ≥ Ek+1, ∀k. Therefore, the

error in (k + 1)st iteration is less than or equal to that in the kth

iteration.
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