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ABSTRACT

We propose a supervised system identification method for recov-
ering an acoustic impulse response in a reverberant room. Unlike
most existing methods, our algorithm is based on prior information
given in the form of a training set of known impulse responses ac-
quired in a controlled environment. By relying on the prior informa-
tion, we train local Principal Component Analysis (PCA) models of
impulse responses corresponding to several different regions in the
room. We propose to crudely localize the respective source position,
and subsequently, based on the appropriate local model, recover the
impulse response. In order to approximate the source location, we
introduce a specially-tailored distance measure which is based on an
affinity between the trained local models. Experimental results in
simulated noisy and reverberant environments demonstrate signifi-
cant improvements over existing methods.

Index Terms— System identification, acoustic source localiza-
tion, principal component analysis, local PCA

1. INTRODUCTION

System identification is a fundamental problem in acoustic signal
processing applications, including echo cancellation [1], dereveber-
ation [2], noise suppression [3], and beamforming. For example, in
echo cancellation, an acoustic impulse response needs to be iden-
tified in order to reduce the coupling between the loudspeaker and
the microphone. System identification is usually carried out directly
by standard least-squares (LS) analysis and adaptive filtering. Un-
fortunately, in low SNR, this approach enables poor results. The
noisy measurements are not reliable, and the estimation of the im-
pulse response is often severely under-determined. This difficulty
stems from the large number of independent parameters needed to
represent the acoustic system in reverberant environments.

Recently, Fozunbal et al. proposed to employ Principal Com-
ponent Analysis (PCA) for the task of system identification [4]. To
overcome the identification challenge, acoustic impulse responses
from several known locations in the room are acquired in advance
and are used for training and calibration. A supervised algorithm for
system identification is then proposed by forming a model based on
a training set. Unfortunately, the global model trained by PCA may
not be sufficient to capture the local properties of acoustic impulse
responses, such as the variability of an impulse response at a certain
small region of the room.

In this paper, we propose a method that is capable of preserving
and exploiting the local features. By relying on the prior informa-
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tion, we train local PCA models of impulse responses correspond-
ing to different regions in the room. We show that when applied
locally, the PCA-based approach accurately captures the structure of
acoustic impulse responses. Consequently, a two-stage identification
algorithm is proposed. In the first stage, we crudely localize the re-
spective source position. For estimating the location, we introduce
a specially-tailored distance measure which is based on an affinity
between the trained local models. We note that the focus of the work
is system identification, and the crude (single-channel) localization
is merely a by-product of the algorithm. However, the introduced
measure may be beneficial, for example, in supervised source local-
ization methods, e.g. [5]. The coarse localization determines the
proper local model of the desired acoustic impulse response. Then,
in the second stage, we recover the impulse response by relying on
the appropriate local model. The estimated response should corre-
spond to the measured source and microphone signals. In addition,
it should fit the local model, which characterizes acoustic impulse
responses in this part of the room. Accordingly, the proposed iden-
tification is carried out by solving a constrained minimization prob-
lem, representing both requirements. Experimental study of the al-
gorithm show significant improvement compared to direct LS and
global PCA approaches.

The remainder of the paper is organized as follows. In Section 2,
we describe the setup and formulate the problem. In Section 3, we
present our proposed algorithm for system identification. Finally, in
Section 4, experimental results demonstrate the performance of the
algorithm in simulated noisy and reverberant environments.

2. PROBLEM FORMULATION

The acoustic impulse response between a speaker and a microphone
is dictated by numerous parameters: the ambient room size and ge-
ometry; the presence of objects in the room; the locations of the
speaker and the microphone; and the reflective properties of the
walls. Although in practice any of these factors is subject to change,
we assume they all remain static, except the speaker location. In
our setting, it implies that the data acquired in the training (i.e.,
calibration) phase is indeed applicable in the test phase. Further-
more, the acoustic impulse response between the microphone and
the speaker is completely determined by the location of the speaker.
We let hθ(n) denote the acoustic impulse response between the mi-
crophone and a speaker, at position θ = [φ, ϕ, ρ], where φ and ϕ are
the azimuth and elevation angles relative to the microphone and ρ is
the distance between the speaker and the microphone.

We assume the availability of a training set, i.e., a set of known
impulse responses H corresponding to a set of speaker locations
Θ. The set H may be acquired, for example, by employing clas-
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sic non-blind system identification techniques in a controlled, noise-
less environment. We require the set of locations to be of the form
Θ =

⋃m

i=1
Θi, where each set Θi = {θij }

L
j=1 consists of L small

perturbations of a typical, predefined speaker location θi. Conse-
quently, our training set takes the form H =

⋃m

i=1
Hi, where each

Hi = {hij (n)}
L
j=1 is a “cluster” of L impulse responses acquired

at the proximity of the location θi. While this requirement may seem
unrealistic, we note that in practice it is often the case. Typical
sources usually move slightly with time due to natural small per-
turbations. Thus, by dividing a measurement interval into L subin-
tervals, we obtain measurements corresponding to the “cluster" of
impulse responses. For more details, see [6], where this assumption
was verified on real room recordings.

The input of the algorithm, at the test phase, consists of a target
pair {x(n), y(n)} of source and microphone signals corresponding
to an unknown speaker location θ′. The source and microphone
signals acquired during the entire observation interval are divided
into L′ subintervals {xi(n), yi(n)}

L′

i=1 corresponding to locations
{θ′i}

L′

i=1. As with the training data, we assume that these locations
are small perturbations of the location θ′. Provided there is no
double-talk, the signals yi(n) are expressed as

yi(n) = hθ′
i
(n) ∗ xi(n) + ui(n) , (1)

where hθ′
i
(n) is the unknown acoustic impulse response correspond-

ing to the location θ′i, and ui(n) is a local noise. Our goal in this
work is to recover the impulse response hθ′ , by exploiting the prior
information conveyed by the training data H, in conjunction with the
test data.

We consider an algebraic formulation of the problem. An acous-
tic impulse response is denoted by a vector hθ′ ∈ R

D , and the
source and microphone signals are vectors x ∈ R

N and y ∈ R
M

respectively, with M = N + D − 1. Accordingly, (1) can then be
rewritten as

y = X
T
hθ′ + u (2)

where u ∈ R
M is a noise vector, and the matrix X is a D × M

convolution matrix of the vector x. In practice, the value of D is
dictated by the sampling frequency and the reverberation time of the
room, and is usually in the order of a few thousands.

In view of (2), our algorithm seeks to minimize the MSE of the
estimation of hθ′ , i.e.,

J(h) =
1

M
‖XT

h− y‖2 . (3)

However, solving this problem directly by standard LS analysis often
leads to a poor estimate of hθ′ , especially in low SNR and high
reverberation conditions. This is due to the high dimensionality of
the problem, requiring an extremely large number of samples (i.e., a
large value of N ) to compensate for the large number of degrees of
freedom. Thus, additional prior information on the structure of hθ′

is necessary to overcome this challenge. In our setting, we form a
model for hθ′ by relying on the training data.

3. PROPOSED ALGORITHM

In [4], the authors proposed to compute the empirical mean vector
and covariance matrix of the training set,

h̄ =
1

|Θ|

∑
θ∈Θ

hθ , Σ =
1

|Θ|

∑
θ∈Θ

(hθ − h̄)(hθ − h̄)T . (4)

The pair (h̄,Σ) is then used as the learned model. By employing
PCA, the large eigenvectors of Σ, which correspond to the principal
“parameters”, capture most of the information disclosed in the data.
Hence, the dimensionality of the problem is significantly reduced
by considering only a subspace of RD, spanned by a few principal
eigenvectors.

A well known limitation of PCA is that it is linear and able to
capture only the global structure (in R

D) of the training data. Un-
fortunately, a typical set of acoustic impulse responses, acquired at
different positions in a room, admits an extremely complex global
structure (often referred to as a non-linear manifold). As a result, a
low-dimensional linear subspace of RD may not faithfully describe
the data in our setting.

On the other hand, a PCA-based approach may perform rather
well when applied locally, i.e., on a data set sufficiently condensed
in a small neighborhood. The resulting principal eigenvectors may
then be thought of as a representation of a “tangent space” of the
manifold at that location. In our application, this corresponds to
making use of a dataset of acoustic impulse responses measured at
the immediate vicinity of a certain position in the room. A crucial
observation at this point is that such local model, conveying the local
variability of the impulse response, can also serve as a “signature”
(i.e., a feature set) of the respective source position. This gives rise
to a novel metric between acoustic impulse responses, that captures
the proximity in terms of the respective source locations. A similar
concept was previously presented and analyzed in [6, 7].

Based on the above observations, our algorithm exploits locally-
computed covariance matrices to approximate (i.e., localize) the
source position θ′, and subsequently to recover (i.e., identify) the
impulse response hθ′ . The remainder of this section is dedicated to
a detailed description of the algorithm.

3.1. Training phase

The training stage involves the computation of local PCA models, at
each of the “clusters” given the training set. Specifically, for each
i = 1, . . . ,m we define

h̄θi =
1

|Θi|

∑
θ∈Θi

hθ , Σθi =
1

|Θi|

∑
θ∈Θi

(hθ − h̄θi)(hθ − h̄θi)
T
,

so that our model is formed by the pairs {h̄θi ,Σθi}
m
i=1. For storage

efficiency, and for reasons that will become apparent shortly, we may
keep only a low-rank approximation of each covariance matrix Σθi ,
determined by its k largest eigenvectors (where k is a predefined
parameter).

3.2. Test phase

Given the pairs {xi, yi}
L′

i=1 at test time, we first compute a crude,
noisy estimate of each of the individual acoustic impulse responses,
by solving the problem

ĥθ′
i
= arg min

h∈RD
‖XT

i h− yi‖
2
,

where Xi is D ×M convolution matrix of the vector xi. The solu-
tion to this LS problem is given by

ĥθ′
i
= (XiX

T
i )

−1
Xyi .

This enables the estimation of a target pair {h̄θ′ , Σθ′}, defined as
the empirical mean and covariance of the vectors {ĥθ′

i
}L

′

i=1. As be-
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fore, it is sufficient to store a rank-k approximation of the covariance
Σθ′ , instead of a full matrix.

One of the key points of this work is to establish an affinity met-
ric that faithfully indicates the distance between two acoustic im-
pulse responses, with respect to the spatial source location. Clearly,
the Euclidean distance between the responses is very limited. For
example, in anechoic rooms, Euclidean distances merely indicate
whether the corresponding sources are located within the same dis-
tance from the microphone. In this work, we capitalize the local
covariance matrices, which convey the second order statistics of the
local spatial variability of the responses, in order to compute an affin-
ity metric.

For any two locations θ1, θ2 in the room, for which estimations
of the local covariance matrices Σθ1 , Σθ2 are at hand, we define an
affinity metric via

d(θ1, θ2) = ‖Σθ1 −Σθ2‖
2

F (5)

where ‖ · ‖F denotes the Frobenious norm. It is straightforward
to show that a good approximation of this metric can be obtained
by relying on the rank-k approximations of the matrices Σθ1 , Σθ2 ,
rather than on the full matrices.

For localizing the source of the signal y(n), we naturally choose
the training location θi whose distance to the unknown target posi-
tion θ′, as measured by (5), is minimized. That is, we let θ̃ = θi∗

where

i
∗ = argmin

i
d(θi, θ

′) = argmin
i

‖Σθi − Σθ′‖
2

F

and θ̃ is a crude approximation of the source position. Note that,
though the location θ′ is unknown, we are able to compute the dis-
tances d(θi, θ′) since we obtain an estimate of the local covariance
at θ′. We also note that the known impulse response hθ̃ does not
yield sufficiently accurate identification.

Once an approximate coarse location θ̃ is determined, we uti-
lize the local PCA model (h̄θ̃, Σθ̃) to identify the acoustic impulse
response hθ′ . Note that this model is available beforehand, since
the position θ̃ = θi∗ is amidst the training locations. It is worth-
while noting that empirical tests showed that the identification based
on the PCA model (h̄θ′ , Σθ′), computed from the noisy measure-
ments, enables poor results. Thus, the prior information and crude
localization step are essential to accurate system identification. Let

Σθ̃ = [ΨΦ]

[
Λ 0
0 Λ̄

] [
ΨT

ΦT

]

be the singular value decomposition (SVD) of Σθ̃ , where Λ is a
k×k diagonal matrix consisting of the k largest singular values, and
Ψ = [ψ1, . . . , ψk] with ψ1, . . . , ψk denote the k largest eigenvec-
tors of Σθ̃ . We assume that the columns of Ψ define a basis that well
approximates all possible acoustic paths of this room region. Thus,
with high probability, the desired impulse response hθ′ satisfies

hθ′ − h̄θ̃ ∈ Span{ψ1, . . . , ψk}. (6)

Using the local model, we minimize the estimation error (3) subject
to the constraint (6), i.e.,

min
h∈RD

‖XTh− y‖2

subject to h− h̄θ̃ ∈ Span{ψ1, . . . , ψk}.
(7)

We note that the constraint becomes more accurate as more train-
ing data from this part of the room is available. On the other hand,
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Fig. 1. First experiment results. (a) The obtained MSE of the
proposed algorithm (Local PCA) under different noise levels, com-
pared with a standard LS approach (LS) and a global PCA approach
(Global PCA). (b) A typical localization result. In this example, the
estimated azimuth angle is 0.7053 while the true angle is 0.7017.
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Fig. 2. Second experiment results. (a) The obtained MSE of the
algorithms under different noise levels. (b) A typical 2D localiza-
tion result. In this example, the estimated azimuth and elevation
angles are 0.2765 and 0.2965, while the actual angles are 0.2708
and 0.2889.

in case the source is located remotely from the trained positions,
the constraint may impair the LS criterion. This optimization prob-
lem boils down to a simple LS problem, which is solved over a k-
dimensional subspace of R

D spanned by the vectors ψ1, . . . , ψk .
The solution is given as

ĥθ′ = h̄θ̃ + (ΨT
XX

T
Ψ)−1

Ψ
T
X(y −X

T
h̄θ̃) (8)

where ĥθ′ is the estimate of the desired acoustic impulse response.
It is therefore apparent that for the identification task, the full matrix
Σθ̃ is redundant and only its k largest eigenvectors should be at our
disposal.

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the ability of the algorithm to recover
the location of a speaker and to identify the corresponding acoustic
impulse response. Using the RIR generator [8] we simulate acoustic
impulse responses in a room of dimensions 4 × 4 × 3.5m with a
moderate reverberation time of T60 = 0.2s. Due to computational
considerations, we set the sampling rate to 16 kHz and generate fil-
ters consisting of D = 1024 taps. We position a microphone at a
fixed central location inside the room, and a speaker in various loca-
tions around it.

In the first experiment, we fix the distance between the speaker
and the microphone to ρ = 1.5m, and the direction of arrival (DOA)
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azimuth angle is set in fixed increments of 2◦ along the interval
0◦ − 90◦. The elevation angle with respect to the microphone ϕ is
kept at zero throughout the experiment. At each of the 45 different
speaker locations, we simulate the corresponding acoustic impulse
response at that exact location. Near each location, we simulation
additionalL = 50 impulse responses corresponding to small angular
perturbations of the location. As described in Section 2, these pertur-
bations may correspond to the natural movement of the speaker. The
perturbations were drawn independently from a Gaussian distribu-
tion of zero mean and a standard deviation of 0.2◦. We then formed
our training set by aggregating the acoustic impulse responses.

At the test phase, we pick a random target azimuth θ′ from the
interval 0◦ − 90◦ and simulated an impulse response hθ′ and a pair
of source and microphone signal vectors {x, y} corresponding to
that location. This was accomplished by generating a white Gaus-
sian source signal x of length 5000, convolving it with hθ′ and con-
taminating with additive white Gaussian noise (of a specified SNR)
to obtain y. We repeat this exact procedure at another L′ = 50
positions obtained by perturbing θ′ to obtain the test data vectors
{xi, yi}

L′

i=1.
For evaluating the performance of the algorithm, we compute

the following leakage signal

�(n) = x(n) ∗ hθ′(n) − x(n) ∗ ĥθ′(n)

and measure the normalized leakage variance, corresponding to the
normalized mean square error (MSE) between the underlying clean
and reconstructed source signals at the microphone. We compare
the results of our algorithm to that of an unconstrained LS approach,
and to that of the global PCA approach of [4] (trained over the same
training set).

In Fig. 1(a) we present the results of the identification task, un-
der various noise levels. The results are averaged over 50 repetitions
of the experiment. The curve depicts the MSE of the reconstructed
microphone signal obtained by the three approaches, as a function
of the SNR. For the proposed algorithm, we used k = 25; for the
global PCA algorithm, we tuned the parameters (essentially the di-
mension of the target subspace) to obtain the best possible MSE re-
sults. It is evident that the proposed approach yields a significant ad-
vantage over both methods. In addition, we observe that the relative
improvement obtained by the PCA-based identification methods be-
comes more significant as the SNR decreases and the measurements
become less reliable.

In Fig. 1(b) we present a typical result of the localization stage
in SNR level of 10dB. The graph details the distance of the target
location, as measured by (5), from each of the possible training lo-
cations. It is worthwhile noting that in the neighborhood of the target
location, the proposed metric is highly correlated to the true spatial
distance from this location.

In order to further demonstrate the robustness of the algorithm,
we conducted a second experiment, where both the azimuth and ele-
vation angles φ, ψ are varied. In this experiment, we have 452 train-
ing impulse responses, corresponding to 45 different azimuth and
elevation angles in the range 0◦ − 45◦. In each training location,
additional L = 50 responses corresponding to perturbations in both
angular directions are simulated. The test position of the speaker
is randomly picked within the same range of angles as the training
positions. The rest of the experiment parameters are taken from the
first experiment.

Figure 2(a) presents the MSE obtained by the identification al-
gorithm. We observe similar trends as in Fig. 1(a). The proposed
algorithm outperforms the competing methods. Furthermore, the im-

provement becomes more significant as the SNR decreases. Figure
2(b) depicts the localization results in SNR level of 10dB, where the
color coding is set according to the the distance of the target loca-
tion, as measure by (5), from each of the possible training locations.
We clearly observe a peak in the actual position of the source, en-
abling accurate localization. The results demonstrate the ability of
the proposed measure (5) to properly compare impulse responses
corresponding to speakers in different angular positions.

5. CONCLUSIONS

We have presented a two-stage supervised algorithm for system
identification based on local PCA. The proposed algorithm invokes
a data-driven approach that exploits prior measurements for training
and calibration. The identification is carried out as an optimization
problem that combines the acquired local model along with the
current measurements. Experimental results conducted in simulated
reverberant environments showed encouraging performance.

For future work, we plan to evaluate the performance of the al-
gorithm on recorded data in real environments. It would be interest-
ing to investigate the effect of environmental changes following the
training stage, e.g. when people are moving in the room. In addition,
we intend to extend this approach to the problem of relative transfer
function identification [9, 10]. Improving the estimation of the rel-
ative transfer function between two microphones based on training
data, may be highly beneficial for array processing and beamform-
ing.
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