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ABSTRACT

This paper presents a novel approach for partial multichannel
equalization using the multiple-input/output inverse theorem with
the first part of one of the estimated channels as the target re-
sponse (P-MINT). In order to further increase the robustness against
channel estimation errors, two extensions are proposed, i.e. the in-
corporation of a regularization parameter in the inverse filter design
and a truncated singular value decomposition approach. Experi-
mental results for speech dereverberation show that the regular-
ized P-MINT method outperforms state-of-the-art techniques such
as channel shortening and the relaxed multichannel least-squares
method in terms of robustness to channel estimation errors.

Index Terms— acoustic channel equalization, robustness, chan-
nel estimation errors, dereverberation

1. INTRODUCTION

In many speech communication applications the microphone signals
are corrupted by reverberation, causing the speech to sound distant
and spectrally distorted. With the continuously growing demand for
high-quality hands-free speech communication in teleconferencing
applications, voice-controlled systems and hearing aids, speech en-
hancement techniques aimed at dereverberation have become indis-
pensable. One particular class of speech dereverberation techniques
is acoustic channel equalization, which is based on estimating and
inverse filtering the room impulse responses (RIRs), e.g. using the
multiple-input/output inverse theorem (MINT) technique that aims
to recover the anechoic speech signal [1].

However, since in practice the estimated acoustic system typically
differs from the real system due to fluctuations of the RIRs (e.g. tem-
perature or position variations [2]) or estimation errors (e.g. due to
the sensitivity of blind system identification methods to interfering
noise [3]), it is well known that MINT fails to equalize the true
acoustic system, possibly leading to severe distortions in the out-
put signal. In order to increase the robustness of MINT against es-
timation errors, it has been proposed to incorporate a regularization
parameter in the filter design [4] or to use a truncated singular value
decomposition (TSVD) approach [5].

However, since late reverberation (typically defined as the part of
the room impulse response after 50-80 ms) is known to be the ma-
jor cause of sound quality degradation, designing inverse filters to
partially equalize the channel such that only the late reverberation
effect is removed (e.g. using channel shortening [6]), is sufficient
for speech dereverberation and has even been shown to be more ro-
bust than designing exact inverse filters that recover the anechoic
speech signal. Aiming for robust partial multichannel equalization
for speech dereverberation, we propose an alternative approach to
channel shortening, which uses MINT and the first part of one of the

estimated channels as the target response. In order to further enhance
its robustness to channel estimation errors, we propose to incorpo-
rate regularization and truncation procedures similarly to [4] and [5],
and investigate the robustness of all considered approaches against
various channel estimation errors.

2. ACOUSTIC MULTICHANNEL EQUALIZATION
TECHNIQUES

Consider an acoustic system with a single source and M micro-
phones as depicted in Fig. 1. The m-th microphone signal at time
index n is given by xm(n) = hm(n) ∗ s(n), where ∗ denotes the
convolution operation, s(n) is the clean speech signal, and hm(n)
indicates the room impulse response (RIR) between the source and
the m-th microphone, which can be described in vector notation as

hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , (1)

with Lh its length and {·}T the transpose operation.
In order to achieve perfect channel equalization up to a delay τ ,
inverse filters gm of length Lg need to be computed, with

gm = [gm(0) gm(1) . . . gm(Lg − 1)]T , such that

ŝ(n) =
M∑

m=1

xm(n) ∗ gm(n) = s(n− τ). (2)

This convolution operation can be expressed in matrix/vector nota-
tion as

Hg = d, (3)

with

H = [H1 H2 . . . HM ](Lh+Lg−1)×(MLg)

g =
[
gT
1 gT

2 . . . gT
M

]T
(MLg)×(1)

d = [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T(Lh+Lg−1)×(1), (4)

where Hm is the (Lh + Lg − 1)× (Lg) convolution matrix of hm

and {·}(m)×(n) denotes the size of the matrix/vector under consid-
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Fig. 1: Multichannel equalization system
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eration. Assuming that the RIRs do not share any common zeros and
that Lg ≥ �Lh−1

M−1
�, exact inverse filters can be computed using the

multiple-input/output inverse theorem [1] as

g = H+d, (5)

where {·}+ denotes the Moore-Penrose pseudo-inverse. It has been
shown in [7] that the matrix H is full row-rank, therefore its pseudo-
inverse can be computed as H+ = HT (HHT )−1.

Since the least-squares solution given in (5) is very sensitive to chan-
nel estimation errors, regularization procedures for the inverse filter
design have been proposed, such as the regularized least-squares and
truncated singular value decomposition approach described below.

Regularized MINT. In the regularized least-squares approach pre-
sented in [4] the inverse filter is computed as

g = (HTH+ δI)−1HTd, (6)

where δ is a regularization parameter and I is the (MLg)× (MLg)
identity matrix. Increasing the parameter δ in (6) decreases the norm
of g, which makes the inverse filter less sensitive to fluctuations of
the RIRs. On the other hand, increasing this parameter reduces the
accuracy of the inverse filters with respect to the true RIRs, resulting
in a trade-off between robustness and equalization performance.

Truncated MINT. Another approach for increasing the robustness
of MINT has been proposed in [5], where the pseudo-inverse in (5)
is computed using the singular value decomposition of H, i.e.

H = UΣVT ⇒ H+ = VΣ+UT , (7)

where U and V are orthogonal (Lh+Lg −1)× (Lh+Lg −1) and
(MLg)× (Lh +Lg − 1) matrices respectively, and Σ is a diagonal
matrix consisting of the singular values σi of H in descending order,
i.e. Σ = diag{[σ1 σ2 . . . σLh+Lg−1]}. When H contains estima-
tion errors, also the singular values σi will be perturbed by errors.
In order to decrease the sensitivity of the inverse filter to these er-
rors, truncating the singular value decomposition up to a truncation
parameter k is proposed, i.e. Σk = diag{[σ1 σ2 . . . σk 0 . . . 0]},
such that the smallest singular values are disregarded. Similarly to
the regularized MINT method, also this approach results in a trade-
off between robustness and equalization performance.

In addition, experimental results in [6] show that partial chan-
nel equalization techniques such as relaxed multichannel least-
squares (RMCLS) and channel shortening (CS) outperform MINT
in terms of robustness to channel estimation errors. These methods
aim at shortening the equalized impulse response (EIR) defined as

c(i) =
M∑

m=1

hm(i) ∗ gm(i), i = 0, 1, . . . , Lh + Lg − 2. (8)

Relaxed multichannel least-squares. RMCLS achieves channel
shortening by introducing a weighting function w in (3), i.e.

WHg = Wd, (9)

with W = diag{w} and

w = [1 . . . 1︸ ︷︷ ︸
τ

1 0 . . . 0︸ ︷︷ ︸
Ld

1 . . . 1]T(Lh+Lg−1)×(1), (10)

where Ld denotes the length of the direct path and early reflections
(in number of samples), which is typically considered to be between

50 and 80 ms. The inverse filter g is then computed as

g = (WH)+Wd, (11)

which ensures that the last taps of the EIR are set to 0, while putting
no constraints on the first taps.

Channel shortening. The aim of CS is to maximize the energy in
the first Ld taps of the equalized impulse response, while minimizing
the energy of the remaining taps. This can be expressed in terms of
a generalized Rayleigh quotient maximization problem, i.e.

max
g

gTBg

gTAg
, (12)

where

B = HTdiag{wd}Tdiag{wd}H
A = HTdiag{wu}Tdiag{wu}H
wd = [0 . . . 0︸ ︷︷ ︸

τ

1 . . . 1︸ ︷︷ ︸
Ld

0 . . . 0]T(Lh+Lg−1)×(1)

wu = 1(Lh+Lg−1)×(1) −wd. (13)

Maximizing the generalized Rayleigh quotient in (12) is equivalent
to the generalized eigenvalue problem Bg = λAg, where the op-
timal filter g is the generalized eigenvector corresponding to the
largest generalized eigenvalue. However, since multiple solutions
to (12) exist, a criterion has been proposed in [6] for selecting a
perceptually advantageous solution, i.e. the one leading to the mini-
mum l2-norm EIR.

3. PARTIAL MULTICHANNEL EQUALIZATION
USING MINT (P-MINT)

Although the partial channel equalization techniques presented
above ensure that the EIR is shortened, they have no control over the
filter coefficients, and hence the frequency response of the shortened
equalized impulse response, which may lead to undesired perceptual
effects. In order to achieve a more direct control over these filter
coefficients, we propose to use the first part of one of the estimated
RIRs as the target response in (3) instead of d, i.e.

Hg = hd
m, (14)

where

hd
m = [0 . . . 0︸ ︷︷ ︸

τ

hm(0) . . . hm(Ld − 1)︸ ︷︷ ︸
Ld

0 . . . 0]T . (15)

Assuming that the same conditions as for MINT are satisfied, the
solution to (14) is given by

g = H+hd
m. (16)

Since Partial channel equalization is achieved using MINT, we refer
to this method as P-MINT. Following similar arguments as in [6],
it can be shown that the inverse filter calculated by P-MINT satis-
fies gTAg = 0 and gTBg �= 0, therefore it also maximizes the
generalized Rayleigh quotient in (12). Furthermore, this inverse fil-
ter is a linear combination of the multiple generalized eigenvectors
obtained in the generalized eigenvalue decomposition Bg = λAg.1

Although it will be shown using the experimental results in Section 4

1Due to space constraints, the proof of this statement is omitted here.
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that P-MINT is more robust to channel estimation errors than chan-
nel shortening, in order to further increase its robustness as channel
estimation errors increase, we also propose to extend P-MINT using
regularization and truncation similarly as in [4] and [5].
Regularized P-MINT. In analogy to (6), the inverse filter is calcu-
lated as

g = (HTH+ δI)−1HThd
m, (17)

where δ is a regularization parameter.
Truncated P-MINT. Similarly to the TSVD approach discussed in
Section 2, we now compute the inverse filter g as

g = VΣ+
k U

Thd
m, (18)

where k is a truncation parameter.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance and robustness of the pro-
posed approaches when channel estimation errors are present, we
have used a 2-channel acoustic system (T60 ≈ 300 ms) from the
MARDY database [8] as the true system to be equalized. The sam-
pling frequency is fs = 16 kHz, and the simulation parameters are
set to Lh = 2000, Lg = 1999, and τ = 0. Further, in CS, RMCLS,
and P-MINT, we have used Ld = 0.05fs, corresponding to 50 ms,
which is a typical transition time between early and late reflections.
Additionally, the desired response in P-MINT is chosen as the direct
path of the first estimated channel hd

1 .
The true acoustic system h is perturbed as in [9] to obtain

ĥm(n) = [1 + e(n)]hm(n), (19)

where e(n) is an uncorrelated Gaussian noise sequence with zero
mean and an appropriate variance, such that a desired channel mis-
match Cm, defined as

Cm = 20 log10
‖h− ĥ‖2
‖h‖2 , (20)

is generated.

Fig. 2: Energy decay curves of MINT, CS, P-MINT, and h1

(Cm = −33 dB)

We have considered two different channel mismatches, i.e.
Cm = −33 dB and Cm = −15 dB, and the performance of the
multichannel equalization algorithms is evaluated by calculating the
energy decay curves (EDCs) of the equalized impulse responses,
defined as

EDCc(i)=10 log10
1

‖c‖22

Lh+Lg−1∑
j=i

c2(j), i=0, . . . , Lh+Lg−2, (21)

where EDCc denotes the energy decay curve (EDC) of c. For the
sake of readability and to avoid overcrowded plots, the experimental
part is structured in three parts.

Experiment 1. In the first experiment, the performance of P-MINT
is compared to MINT and CS for the considered estimated acoustic
systems. Figs. 2 and 3 depict the obtained EDCs for Cm = −33 dB
and Cm = −15 dB, respectively. It can be seen in Fig. 2 that MINT
completely fails to equalize the channel, while for CS, the part of
the EDC before 50 ms (corresponding to Ld) is well above the EDC
of h1. On the other hand, the EDC obtained using P-MINT is signifi-
cantly below EDCh1 and the artificial tail introduced after 125 ms is
below audible levels. Fig. 3 shows that as channel estimation errors
increase to −15 dB, the reverberation suppression is not satisfactory,
even though P-MINT is still more robust than CS and MINT.

Experiment 2. In an attempt to further increase the robustness, we
have investigated the performance of the regularized P-MINT and
truncated P-MINT, described in Section 3. Additionally, the per-
formance of the above mentioned procedures is compared to reg-
ularized and truncated MINT, described in Section 2. Since all of
these procedures require a regularization or truncation parameter to
be chosen, a performance measure needs to be defined to select the
parameter that yields the optimal EIR. In this paper we have selected
the optimal regularization or truncation parameter p, as the one that
yields the EDC that is closest to the desired EDC in the minimum
mean square error sense, i.e.

min
p

1

Lh + Lg − 1

Lh+Lg−2∑
i=0

|EDCcp(i)− EDChd
1
(i)|2, (22)

Fig. 3: Energy decay curves of MINT, CS, P-MINT, and h1

(Cm = −15 dB)
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Fig. 4: Energy decay curves of regularized MINT, truncated MINT,

regularized P-MINT, truncated P-MINT, and h1 (Cm = −15 dB)

where cp denotes the EIR obtained for a given regularization param-
eter δ or truncation value k. (Note that to make the implementation
feasible, we have set the −∞ taps in EDChd

1
to −60 dB). The opti-

mal EDCs determined based on the above mentioned selection pro-
cedure are depicted in Fig. 4 for Cm = −15 dB. As illustrated in
this figure, the truncated MINT solution completely fails to equalize
the channel, whereas the regularized MINT fails at suppressing au-
dible reverberation. On the other hand, the regularized and truncated
P-MINT methods yield a higher performance, with the regularized
P-MINT method outperforming all of the other considered approach-
es. Based on this experiment, we conclude that the regularized least-
squares and the truncated singular value decomposition approach are
more effective when applied to P-MINT than MINT. Furthermore,
these experimental results show that regularized P-MINT appears to
be the most robust method to channel estimation errors.

Experiment 3. Finally, we compare the proposed optimal regular-
ized P-MINT solution to the RMCLS solution, which to the best of
our knowledge, is the most robust multichannel equalization algo-
rithm that has been proposed [6]. Fig. 5 depicts the obtained EDCs
using MINT, CS, regularized P-MINT, and RMCLS for the chan-
nel estimation error Cm = −15 dB. As illustrated in this figure, al-
so RMCLS fails to equalize the first part of h1, where the EDC is
higher than EDCh1 . On the other hand, the regularized P-MINT ap-
proach yields an EDC that is always lower than EDCh1 , and even
though the tail of its EDC is approximately 5 dB higher than that
of RMCLS, informal listening tests suggest that this reverberation
is not audible. Therefore, the proposed regularized P-MINT method
outperforms all the considered approaches in terms of robustness to
estimation errors.

5. CONCLUSION

In this paper, we have presented a novel approach to partial chan-
nel equalization for speech dereverberation using the multiple-
input/output inverse theorem and the first part of one of the estimated
channels as the desired response (P-MINT). Based on experimental
results, it has been shown that P-MINT outperforms MINT and CS
in terms of robustness to channel estimation errors. In addition, we
have investigated two methods to further increase the robustness
against channel estimation errors, namely incorporating a regulari-

Fig. 5: Energy decay curves of MINT, CS, P-MINT, RMCLS, and

h1 (Cm = −15 dB)

zation parameter in the inverse filter design and a truncated singular
value decomposition approach. Experimental results show that the
regularized P-MINT method exhibits the highest robustness of all
the presented partial channel equalization techniques. Automating
the selection of an optimal regularization parameter as well as the
comparison of the presented techniques in terms of the quality of the
perceived speech remain topics for future research.
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