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ABSTRACT

We consider the problem of multiple-loudspeaker low-frequency
room equalization for a wide listening area, where the equalized
loudspeaker is helped using the remaining ones. Using a spatial
discretization of the listening area, we formulate the problem as
a multipoint error minimization between desired and synthesized
magnitude frequency responses. The desired response and cost
function are formulated with a goal of capturing the room’s spec-
tral power profile, and penalizing strong resonances. Considering
physical and psychoacoustical observations, we argue for the use
of gain-limited, short, and well-localized equalization filters, with
an additional delay for loudspeakers that help the equalized one.
We propose a convex optimization framework for computing room
equalization filters, where the mentioned filter requirements are in-
corporated as convex constraints. We verify the effectiveness of our
equalization approach through simulations.

Index Terms— Room equalization, MIMO filtering, convex op-
timization

1. INTRODUCTION

Low-frequency room acoustics is dominated by usually clearly sep-
arated resonances or room modes. Since the density of resonances
increases with the square of frequency [1], starting from some
frequency—called the Schroeder frequency—room modes overlap
and combine in a complex, location-dependent way that is best
modeled by a statistical theory of room acoustics. The Schroeder
frequency is dependent on the room’s geometry. For concert halls, it
is on the lower end of audible frequencies; in listening rooms, which
we focus on in this paper, it is roughly between 100 Hz and 200 Hz;
and it can go up to several hundred Hertz in cars.

The low-frequency room resonances below the Schroeder fre-
quency are thus characteristic of the entire room’s listening area,
and they define the room’s bass performance. In music, strong res-
onances affect the timbre in an audible way, while for speech, the
long reverberation tails associated with strong resonances blur the
syllables and decrease the intelligibility. Thus, both in music and
speech reproduction, it is important to reduce the effect of excessive
resonances in order to improve the listening experience.
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Above the Schroeder frequency, the high spatial variation of the
resonant structure of room impulse responses (RIRs) makes the res-
onance control a highly location-dependent effort. This is the reason
why some systems for wide-area room equalization do not correct
the room beyond the Schroeder frequency, and why we focus only
on equalizing low frequencies.

The first works on room equalization go back to 1960s, and they
were in the spirit of controlling room modes. Namely, Boner [2]
proposed the use of equalization to attenuate the resonances in sound
systems. Groh [3] analyzed the low-frequency modal behavior of a
room and performed equalization by finding adequate placement for
a loudspeaker within a room. Similar, albeit more systematic ap-
proaches to optimizing the placement and number of low-frequency
loudspeakers, have been investigated more recently by a number of
authors (e.g., see [4, 5]). There have also been a fair amount of
works recently with a focus on correcting the low-frequency modal
behavior of a room using infinite impulse response (IIR) filters (e.g.,
see [6, 5, 7]).

In this paper, we present an approach for multiple-loudspeaker
low-frequency room correction in an extended listening area, based
on convex optimization. Our approach resembles multiple-point RIR
equalization approaches (e.g., see [8]). However, it is more gen-
eral, since it allows one to systematically incorporate physical and
psychoacoustical aspects relevant to RIR correction through convex
constraints. The psychoacoustical phenomena of particular interest
for room equalization are temporal masking and the precedence ef-
fect, and they can be incorporated through constraining the time-
domain profile of the equalization filters’ impulse responses. Exces-
sive driving of loudspeakers at some frequencies, characteristic to
the efforts of correcting deep notches, is prevented by limiting the
maximum gain of equalization filters over frequency.

2. PROPOSED ROOM EQUALIZATION

2.1. Problem description

Consider a listening room with a multichannel loudspeaker setup,
consisting of L loudspeakers S1, . . . , SL. An example setup, which
is considered later in Section 3, is shown in Fig. 1. Note that we are
focusing on equalizing the response of one loudspeaker, denoted as
the main loudspeaker, with the help of the remaining, for this task
called auxiliary loudspeakers. Without loss of generality, we assign
index 1 to the main loudspeaker.

As the first step, one needs to measure RIRs of all loudspeak-
ers in N control points C1, . . . , CN which cover the listening area
where RIRs are being equalized (gray rectangular area in Fig. 1).
The placement of control points can be systematic or random, and as
few as N = 4 control points can capture with high accuracy the 3D
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Fig. 1. Equalization of a five-channel loudspeaker setup in a room
of dimensions (6m, 4m, 2.5m). In the illustration, the response of
loudspeaker S1 is equalized in the listening area around the central
control point C1.

sound energy in a room, as reported in [9]. We denote by Gij(ω) the
frequency response of the RIR between loudspeaker j and control
point i, and by G(ω) the N × L matrix containing the frequency
responses Gij(ω).

One also needs to decide on the length Nh of equalization filters
hi[n]. Note that working with highly downsampled signals allows
using relatively short filters, and multirate filtering offers savings in
the computational complexity. Thus, Nh can be up to the order of the
length of RIRs, which is still short in the downsampled domain cor-
responding to a highly reduced sampling frequency f ′

S . Let the vec-
tor hi = [hi[0] . . . hi[Nh − 1]]T contain the samples of the equal-
ization filter of loudspeaker i, and the vector h = [hT

1 . . . hT
L ]T

contain the samples of all loudspeaker filters stacked together. Note
that vector h is what we are looking for.

Since our design procedure considers the equalized RIRs in
the frequency domain, we discretize the frequency axis into Nf

uniformly-spaced normalized frequencies ω0, . . . , ωNf−1, where
ω0 = 0, and ωNf−1 = π corresponds to the Nyquist frequency

f ′
S/2. The frequency spacing needs to be of the order of room

resonances’ bandwidth, which can go down to around 1 Hz [1].

A vector H(ωi) = [H1(ωi) . . . HL(ωi)]
T , containing the fre-

quency responses of the equalization filters, is obtained by the fol-
lowing product:

H(ωi) = V (ωi) h , (1)

where

V (ωi) = IL×L ⊗ [1 ejωi . . . ej(Nh−1)ωi ] , (2)

IL×L is an L × L identity matrix, and ⊗ denotes the Kronecker
product.

The frequency responses at the normalized frequency ωi of the
equalized RIRs in the control points are given by

Y (ωi) = [Y1(ωi) . . . YN (ωi)]
T = G(ωi) H(ωi) . (3)

In order to consider the equalized frequency responses in all con-
trol points C1, . . . , CN and at all frequencies ω0, . . . , ωNf−1, vec-
tors Y (ωi) are stacked into one long vector defined by

Y =

2
64

Y (ω0)
...

Y (ωNf−1)

3
75 =

2
64

GT (ω0) V (ω0)
...

GT (ωNf−1) V (ωNf−1)

3
75 h .

Essentially, the goal of equalization is to make the equalized
RIRs as close as possible to the desired responses, discussed next, in
all control points at all considered frequencies.

2.2. Desired response calculation

One of the main challenges when designing room equalizers is spec-
ifying the desired frequency response D(ω) the equalized system
needs to achieve, and there is no wide consensus on this issue. On the
other hand, it has long been suggested that an equalization procedure
should not undo the effect of a room and make the reproduced sound
artificially anechoic, but it should sensibly correct the room’s un-
desired features, usually associated with strong low-frequency reso-
nances.

As briefly mentioned at the beginning of this section, the listen-
ing area is sampled with control points in order to capture the es-
sential properties of a sound field developed in the equalized room.
At the same time, sampling multiple points allows to avoid position-
dependent anomalies, such as deep frequency-response notches as-
sociated with nodes of some of the room modes.

It was shown in [9] that the root mean square (RMS) value of
the magnitude frequency response of RIR taken over several mea-
surement points gives a stable estimate of the room’s spectral power
profile. Hence, for defining the desired frequency characteristic, we
combine the mentioned spatial power averaging with magnitude fre-
quency response smoothing in fractional octave bands. More specif-
ically, the desired response D(ωi) is obtained as follows:

D(ωi) =

vuut 1

N

NX
m=1

(G̃m1(ωi))2 , (4)

where G̃m1(ω) is fractional-octave (e.g., 1/3-octave) smoothed mag-
nitude characteristic of the RIR between the main loudspeaker and
control point m.1

Since the same desired frequency response is taken for each con-
trol point, the vector of desired responses at frequency ωi is given by
D(ωi) = D(ωi)1N×1, where the column-vector 1N×1 contains N
ones. In order to compare the equalized with desired frequency re-
sponses in control points, vectors D(ωi) need to be stacked together
into the column vector D = [DT (ω0) · · · DT (ωNf−1)]

T .

2.3. Choice of a cost function

Before defining the cost function, we first define a resonance detec-
tion vector R = [R(ω0) . . . R(ωNf )]T by

R(ωi) = |maxm(|Gm1(ωi)|)−D(ωi)|+ ε , (5)

where ε is a predefined minimum weight that can be given to a spec-
tral magnitude error. Note that R is designed to peak at resonant
frequencies.

For a cost function, we chose to use a weighted magnitude error
that penalizes more the errors at resonant frequencies, and it is given
by

J = ‖W ( |Y | − |D | )‖2 , (6)

where W = diag(R)⊗IN×N , and diag(·) makes a diagonal matrix
from a vector, with vector’s entries on the main diagonal.

1Fractional smoothing is thoroughly described in [10].
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2.4. Equalization filter constraints

Here we present some psychoacoustical and physical considerations
that are used to constrain the computed filters in order to avoid
the location-sensitivity characteristic of some room equalization
approaches.

2.4.1. Temporal-masking constraints

Fig. 2. Illustration of temporal masking for a single pulse.

Temporal masking, illustrated in Fig. 2, is a phenomenon where
a sound stimulus renders inaudible sounds which precede (backward
masking) and follow it (forward masking) [11]. In [12], Fielder pro-
posed considering temporal masking as a criterion for time-domain
distortions of equalization systems. In light of the arguments about
the limitations of using long equalization filters or filters that exhibit
pre-echos, and considering temporal masking, we can expect that the
use of short equalization filters has a good chance of avoiding sen-
sitivity to location changes. In other words, we argue that short and
well localized (“spiky”) filters, whose amplitude profiles fit into the
temporal masking threshold curve m(t) from Fig. 2, are good so-
lutions for wide-area equalization. Our argument is corroborated by
the fact that if a sharp transient is emitted by a loudspeaker, a listener
close to the loudspeaker will not hear a distortion thanks to temporal
masking.

The temporal-masking constraint is defined as a maximum-
amplitude limit to a filter’s impulse response. If m[n] is a sampled
version of the temporal masking threshold curve m(t), then the
equalization filter hi[n] is constrained with

|hi[n] | ≤ m[n] . (7)

2.4.2. Auxiliary loudspeaker filter constraints

In addition to the temporal masking constraint, two additional con-
straints are considered for the auxiliary loudspeakers:

• To prevent that the sounds from the auxiliary loudspeakers
appear as echoes, we use a combination of delay and gain
relative to the main loudspeaker’s filter. The delay and gain
should be such that the auxiliary loudspeaker signals are be-
low the echo threshold [13].

• To prevent that the signal is perceived away from the main
loudspeaker, the delay needs to be at least about 1 ms over
the whole listening area, such that the precedence effect [13]
is active and sound is perceived at the main loudspeaker.

The described constraints for the auxiliary loudspeakers are realized
by the following modification of the temporal-masking constraint
(7):

|hi[n] | ≤ a m[n− n0] , (8)

where a is a positive attenuation factor, and n0 is a lag corresponding
to a delay of around ten milliseconds. Note that both (7) and (8) are
convex constraints. Using vectors, (7) and (8) are combined to

|h | �m , (9)

where � denotes a component-wise ≤.

2.4.3. Maximum-gain constraints

An additional insurance against location sensitivity is putting a limit
on the equalization filter’s gain over frequencies. Namely, this avoids
excessive driving of a loudspeaker in order to correct a deep notch,
which is usually highly position-dependent. The gain of equalization
filters are limited using the following set of convex constraints:

|V (ωi) h | �Hmax , ∀ωi , (10)

where Hmax = [Hmax
1 . . . Hmax

L ]T is a vector with the maximum
gain for each loudspeaker.

2.5. Filter computation procedure

The cost function (6) is not convex, preventing the use of conven-
tional convex optimization tools [14] and making the problem diffi-
cult to solve. We propose Algorithm 1, which is a variation of the
local optimization algorithm by Kassakian [15]. It iteratively solves
a convex program and improves the solution at every step, converg-
ing to a local optimum.

Algorithm 1 Solving a constrained, weighted magnitude least
squares problem (adapted from [15]).

1. Choose the solution tolerance ε
2. Choose the initial solution h
3. repeat
4. J ← ‖W ( |Y | − |D | ) ‖2
5. Compute D̂ such that ∀ωj ∈ {ω0, . . . , ωNf−1}

|D̂(ωj)| = |D(ωj)|
� D̂(ωj) = � (G(ωj) H(ωj))

6. Solve the following convex program

minimize ‖W ( Y − D̂ ) ‖2
subject to |h | �m

|V (ωj) h | �Hmax , j ∈ {0, . . . , Nf − 1}

7. J ′ ← ‖W ( |Y | − |D | ) ‖2
8. until |J ′ − J | < ε

Algorithm 1 is not guaranteed convergence to the global mini-
mum, but it is at least as good as the complex least squares solution,
which uses (6) without absolute-value signs.

3. SIMULATIONS

In order to verify the effectiveness of our room equalization strategy,
we performed a simulation of a five-channel full-range loudspeaker
setup, shown in Fig. 1. We show the equalization of the front loud-
speaker S1 (center channel)2 with the help of the remaining four.

2Note that our numbering differs from the usual way channels are num-
bered in five-channel surround.
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Equalization is done up to the frequency fmax = 200 Hz, which
enables filtering in the downsampled domain corresponding to the
sampling frequency f ′

S = 400 Hz. Equalization filters have the
length of Nh = 16 samples. For auxiliary loudspeakers’ filters,
we used a delay n0 that corresponds to 10 ms, with attenuation
a = 0.25. The resulting equalization filters, both in the time and fre-
quency domain, together with the amplitude constraints, are shown
in Fig. 3.
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Fig. 3. Time-domain (a) and frequency-domain (b) characteristics
of loudspeaker equalization filters hi[n]. Thin dashed lines mark the
amplitude constraints for the main and auxiliary loudspeakers (a)
and the maximum-gain constraint (b).
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Fig. 4. Mean (solid), 25-75 (light-gray), and 3-97 (dark-gray) per-
centiles of the magnitude frequency responses on a rectangular grid
of control points spaced at 25 cm, shown in Fig. 1, before (a) and
after (b) equalizing loudspeaker S1. The desired frequency charac-
teristic D(ω) is shown with a dashed line.

Fig. 4 shows the variations of RIR frequency characteristics on a

rectangular grid of control points, spaced at 25 cm, covering the lis-
tening area (see Fig. 1). From Fig. 4, it can be seen that after equal-
ization, strong resonances get attenuated, as desired. Also, above
80 Hz, the average magnitude frequency characteristic of the equal-
ized RIRs inside the listening area gets significantly improved, ex-
hibiting a smoother behavior and approximating the desired magni-
tude characteristic more closely.

4. CONCLUSION

In this paper, we have presented an approach for low-frequency
multiple-loudspeaker RIR equalization based on convex optimiza-
tion. We have shown a way to formulate typical physchoacoustical
and physical RIR equalization design constraints in terms of convex
constraints on the equalization filters, allowing finding optimal solu-
tions in a systematic fashion. We have also shown the effectiveness
of our approach for equalizing a five-channel loudspeaker system in
an extended listening area, using short filters and making sure that
the equalization system does not cause undesired audible echoes
and localization biases. The proposed approach, using the temporal
masking constraint, can also be applied to single-loudspeaker room
equalization.
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