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ABSTRACT

In this paper, we present a spatio-temporal framework for multi-
channel acoustic modeling in enclosed spaces. Reverberation occurs
when the sound field is enclosed between reflective boundaries (e.g.
walls). We model the reverberated sound field by proper sampling of
the (generalized) Fourier representation of the free-field sound field.
We show that the spatial aliasing introduced by spectral sampling
represents all the (damped) reflections. From the samples of the
generalized spectrum, we compute the spatio-temporal sound field
in the enclosed space with very low-complexity, ofO(N log N) per
measuring position, with N proportional to the reverberation time.

Index Terms— Room impulse response, generalized Fourier
transform, spatio-temporal processing.

1. INTRODUCTION

In many situations, human acoustic communication occurs in en-
closed spaces. In multichannel telecommunication technologies,
e.g., hands-free devices and teleconference systems, the acoustical
properties of the enclosed space become more relevant than in the
single-channel case, since reverberation and acoustic echo feedback
become greater challenges [1]. Moreover, near future technologies
that range from immersive telegaming to telepresence conference
systems, and medical systems such as telesurgery, will require even
greater degrees of acoustic control over hundreds of even thousands
of acoustic input/output channels [2]. It is clear that to enable real-
time, full-duplex telecommunications for such systems, new fast,
scalable signal processing approaches for estimation and modeling
of the spatio-temporal sound field are needed.

In this paper we present a fast, spatio-temporal framework for
multichannel acoustical modeling in enclosed spaces. In Fourier
analysis, it is well known that sampling in one domain implies peri-
odicity in the reciprocal domain [3]. In [4], this property is exploited,
and a fundamental relationship between the free-field sound field,
and the sound field in a room with fully reflective walls is made.
In this case, the reflections can be modeled by a perfectly periodic
structure, or equivalently, by a carefully chosen sampling condition
on the 4-D spectrum of the sound field [4]. In this paper we further
extend the approach to include constant wall reflection coefficients.
First, we show how the enclosed sound field, as modeled by the mir-
ror image source method (MISM) [5], can be expressed as a geomet-
rically weighted periodic summation. Then we associate this infinite
summation, with a sampling condition in a generalized Fourier do-
main. The Poisson summation formula for the generalized Fourier
transform (GFT) [6], relates the geometrically weighted summation
of the sound field over a lattice, to the samples of its generalized
spectrum over the reciprocal lattice. From these samples, we model
with very low complexity (O(N log N) in the reverberation time per
channel) the sound field at every measuring position.
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Fig. 1: Example of the damped repetitions of the free-field sound field
used in the 1-D MISM, to construct the reverberated sound field.

2. THE SOUND FIELD IN AN ENCLOSED SPACE

In order to simplify the discussion, let us first analyze the sound
field as modeled by the MISM in 1-D, and later extend the results to
higher dimensions. We set the first boundary (wall) at position x=0,
and denote by 0 ≤ �x0 ≤ 1 the associated reflection coefficient. The
second boundary is set at a distance Lx, its reflection coefficient is
denoted by 0 ≤ �x1 ≤ 1. The scenario is depicted in Fig. 1, where
the boundaries are indicated by solid lines. Given a free-field sound
field, p0(x, t), the MISM models the reverberated sound field inside
the enclosure (the interval 0 ≤ x ≤ Lx in this case), as the contri-
bution of infinitely many, geometrically damped spatial repetitions
of p0(x, t). In general p0(x, t) consist of two, full bandwidth func-
tions p0+(x − ct) and p0−(x + ct) (the d’Alembert solution [7]),
having compact support (shorter than Lx) in the interval 0≤x≤Lx,
traveling to the right and left respectively.

Let p0+(x)= p0−(x)= δ(x − s0), this is, a Dirac’s delta pulse
located at position x = s0. To correctly account for all reflections,
a second function is used in the MISM, p1(x, t) = p0(−x, t), a
spatial-reversed version of the free-field sound field, starting at posi-
tion x=s1 =−s0. The reverberated sound field p(x, t), is obtained
by a superposition of infinitely many geometrically damped periodic
repetitions of p0(x, t) and p1(x, t). We thus call these two functions
the “mother” sources. Let �x =�x0�x1. We then obtain,

p(x, t) =
X

nx∈Z

�|nx|
x p0+(x + (2Lx)nx, t)

+
X

nx∈Z

�|nx|
x p0−(x + (2Lx)nx, t)

+ �x0

X
nx∈Z

�|nx|
x p1+(x + (2Lx)nx, t)

+ �−1
x0

X
nx∈Z

�|nx|
x p1−(x + (2Lx)nx, t),

where p0+(x, t)=p0(x, t)H(x− s0), p0−(x, t)=p0(x, t)H(−x+
s0), p1+(x, t) = p1(x, t)H(x − s1), and p1−(x, t) =
p1(x, t)H(−x + s1), with H(x) the unit-step function. Note that
for p1 and its repetitions, the “alignment” factors �±1

x0 are necessary
to obtain the correct damping effect inside the enclosure.
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Next, we extend this model to 3-D in space, including the
inverse-square law of sound propagation. In this case, the free-field
sound field p0, as it is registered at position x=[x, y, z]T , and time
t is given by the plenacoustic function (PAF) [8], i.e. the free-field
Green’s function [7],

p0(x, t) =
δ
`
t − r

c

´
4πr

, (1)

where r=‖x− s0‖ is the distance from measurement point x to the
position of the source at time t = 0, i.e. s0 = [xs0, ys0, zs0]

T . As
in the 1-D case, the MISM models the sound field inside the room
by an infinite number of repetitions of the mother sources in every
coordinate. Therefore in general, 2ν mother sources are needed for
the ν-D scenario [4]. The full set of repetitions is then obtained by
a 3-D periodic packing over a lattice, say Λ. We analyze the case
of box-shaped rooms, so that the generator matrix of Λ is given by
Λ = diag (2Lx, 2Ly , 2Lz) [4]. As in the 1-D case, we need to
consider waves traveling exclusively to the positive and negative x,
y and z directions. To do this we let Oq, q = 0, . . . , 7, denote the qth
octant of the 3-D space, and use a binary ordering scheme based on
the signs of the coordinates to enumerate the octants. This is, (x≥0,
y≥0, z≥0)=(+,+, +)=0, (x<0, y≥0, z≥0)=(−,+, +)=1,
and so on. Then for example, O3 � {x ∈ R

3 : x < 0, y < 0, z ≥
0}. Let Hq(x) denote the 3-D unit-step function given by

Hq(x) �

j
1, x ∈ Oq ,
0, otherwise.

Then we define plq(x, t) = pl(x, t)Hq(x − sl). The functions
plq(x, t) represent each of the eight causal and anticausal parts of
the l-th mother source sound field pl(x, t). Let �i0 for i ∈ {x, y, z},
denote the reflection coefficients of the boundaries adjacent to the
origin in each direction, and �i1 denote the reflection coefficients of
the opposite boundaries. Let �x = �x0�x1, and define in the same
way �y and �z. The reverberated sound field in the room is thus
obtained by

p(x, t) =

7X
l=0

7X
q=0

�lq

X
n∈Z3

„Q
i

�
|ni|
i

«
plq(x + Λn, t), (2)

where i∈{x, y, z} and n=[nx, ny , nz]
T . The corresponding align-

ment factors �lq, for each of the functions plq(x, t), can be derived
by extending the analysis given above for the 1-D case.

3. A GENERALIZED POISSON SUMMATION FORMULA

The classical Poisson summation formula relates a signal say, p(x)∈
L2(Rν), to the samples of its spectrum P (φ), as follows,X

n∈Zν

p(x + Λn) =
1

|Λ|

X
k∈Zν

P (Φk)ej(kT
Φ

T
x)dx, (3)

where Λ is a generating matrix for the lattice Λ, and Φ = 2πΛ
−T

is the generator matrix of the spectral sampling lattice Φ.
A generalized Poisson summation formula is introduced in [6],

where the theory is presented for one dimensional functions. This is
extended to multidimensional spaces as follows. For a signal p(x)∈
L2(Rν), we define the generalized Fourier transform (GFT) with
parameter α ∈ C

ν : αi �= 0, ∀i = 0, . . . , ν − 1, as

Fα {p(x)} � Pα(φ) =

Z
Rν

p(x)eβT
xe−j(φT

x)dx, (4)

where β = Λ
−T log(α), Λ−T is the generator matrix of the recip-

rocal lattice of Λ, and log(α)� [log(α0), . . . , log(αν−1)]
T . The

inverse transform is given by,

F -1
α {Pα(φ)} � p(x) =

e−βT
x

(2π)ν

Z
Rν

Pα(φ)ej(xT φ)dx. (5)

The GFT denoted by (4) is equivalent to the Fourier transform (FT)

(if it can be defined) of the modulated signal p(x)eβT
x [6]. When

α = [1, 1, . . . , 1]T , the transform pair (4) and (5) corresponds to
the standard FT pair. The generalized Poisson summation formula
follows by evaluating (4) in (3), i.e.

X
n∈Zν

eβT
Λnp(x + Λn) =

e−βT
x

|Λ|

X
k∈Zν

Pα(Φk)ej(kT
Φ

T
x). (6)

Since βT
Λn= log(α)T

Λ
−1

Λn=
Pν−1

i=0 ni log αi, then we make

elog(α)T
n = exp

 
ν−1X
i=0

ni log αi

!
=

ν−1Y
i=0

αni
i ,

so that (6) can be rewritten as,X
n∈Zν

„
ν−1Q
i=0

αni
i

«
p(x + Λn) =

e−βT
x

|Λ|

X
k∈Zν

Pα(Φk)ej(kT
Φ

T
x). (7)

Let us define p̃α(x)�
P

n∈Zν

`Q
i
αni

i

´
p(x+Λn). It follows that

(7) relates a geometrically weighted periodic extension of the signal
p̃α(x) over a lattice Λ, to the samples of its generalized spectrum
Pα(Φk) over the (scaled) reciprocal lattice Φ.

If β ∈ C
ν : |�{βi}| = 0, ∀βi, is a vector of purely imaginary

components, then jβ is a vector of purely real components and, from
the modulation theorem for the FT [3] we have that,

Pα(φ) � F
n

p(x)eβT
x

o
=P (φ + jβ). (8)

In the next section, we exploit this fact to obtain the generalized
Fourier spectrum from the standard spectrum of the sound field.

4. FAST MODELING OF THE ENCLOSED SOUND FIELD

In this section we present a fast method to compute the full sound
field in a room. We cannot directly associate the sound field as ob-
tained by the geometrically damped summation in (2), to a sampling
condition in the generalized Fourier domain. In order to do that, we
first show that (2) can be expressed as a geometrically weighted peri-
odic summation (in the form given by (7)), and then we associate this
summation to the samples of the generalized spectra of the sound
fields plq(x, t). We first define ςq(x) = sign(x), ςq(y) = sign(y)
and ςq(z) = sign(z) for (x, y, z) ∈ Oq . Clearly, for i ∈ {x, y, z}
each ςq(i) =±1 depending on the signs of the coordinates defining
the octant Oq, then we write,

p(x, t) =
7X

l=0

7X
q=0

�lq

X
n∈Z3

„Q
i

�
ςq(i)ni

i

«
plq(x+Λn, t), x∈VΛ(0),

(9)
where VΛ(0) is the (central) Voronoi region of the lattice Λ at the
origin. The geometrically weighted periodic summation in (9), gives
exactly the same sound field as (2) for x ∈ VΛ(0) (which includes
the actual room space). To see this, we set for a moment ny=nz=0.
Then in the zone |x−xsl

|≤2Lx or |x|≤Lx, we have that,

�|nx|
x pl(x+Λn, t)Hq(x−sl+Λn)=0,

for nx <0 and q even (i.e. ςq(x)=1), and in the same way for nx >
0, and q uneven (i.e. ςq(x) = −1), per definition of the Heaviside
functions Hq(x). Therefore,

�|nx|
x plq(x+Λn, t)=�

ςq(x)nx
x plq(x+Λn, t), |x|≤Lx.
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An equivalent situation occurs in the y and z directions, for ny �= 0
and nz �= 0 respectively, so (9) equals (2) in the zone x ∈ VΛ(0).
Next, we have the following result,
Proposition 1 Let Λ be the generator matrix of the lattice specify-
ing the spatial periodic packing of the sound fields plq(x, t), and let
Φ be the matrix basis of the lattice specifying the sampling points of
the spatial-generalized spectra. If Φ = 2πΛ

−T , then the functions
Pαlq(Φk, ω), k ∈ Z

3, are the generalized Fourier coefficients of

X
n∈Z3

„Q
i

�
ςq(i)ni

i

«
plq(x + Λn, t), (10)

if and only if α=[�
ςq(x)
x , �

ςq(y)
y , �

ςq(z)
z , 1]T .

The proof follows immediately from the generalized Poisson sum-
mation formula, with α=[�

ςq(x)
x , �

ςq(y)
y , �

ςq(z)
z , 1]T , the parameter

of the 4-D spatio-temporal GFT.
This result gives us a formula for reconstructing the full sound

field in a room given by (9). Sample the generalized spectra
Pαlq(φ, ω) using the sampling lattice generated by Φ = 2πΛ

−T ,
apply a temporal inverse GFT with parameter α=1 (i.e. an inverse
FT), then use the generalized Poisson summation formula given by
(7), on the coefficients just obtained to synthesize the functions (10),
which are then used to calculate the reverberated sound field as in
(9). For a box-shaped room with dimensions (Lx, Ly, Lz), the gen-
erator matrix for the spectral sampling lattice is thus defined by,
Φ=2πΛ

−T =diag (π/Lx, π/Ly , π/Lz) [4].
To implement the proposed algorithm on a digital computer, we

need to sample the temporal frequency ω as well. This will intro-
duce undesired temporal aliasing, since p(x, t) is clearly not time
limited (it has infinite support). Let Ψ denote the generator matrix
for the lattice specifying the sampling points of both the spatial and
temporal frequency variables, defined by Ψ= diag (Φ, Ωs), where
Ωs denotes the temporal-frequency sampling interval. The diago-
nal form of Ψ implies independent sampling of spatial and temporal
frequencies. Then, from the generalized Poisson summation formula
and the arguments in Proposition 1, it follows that the sampled spec-
tra Pαlq(Ψk), k ∈ Z

4, are the generalized Fourier coefficients of

p̃αlq(x, t) =
X
n∈Z3

X
n∈Z

„Q
i

�
ςq(i)ni

i

«
plq(x + Λn, t + Tsn).

if Ψ=2πΔ
−T =2π diag (Λ, Ts)

−T . This last equality defines Δ,
where Ts = 2π/Ωs is the interval of temporal periodicity. Clearly,
the summation over n∈Z, n �=0, represents the time-domain alias-
ing introduced by sampling the temporal frequency ω.

Although the sound field p0(x, t) given by (1) has infinite tem-
poral support, we have that limt→∞ p0(x, t) = 0 for x ∈ VΛ(0),
so that by making Ts sufficiently large (i.e. making Ωs sufficiently
small), we can make the error due to time-domain aliasing ne-
glectable. Taking this into account, the total sound field can be ap-
proximated by

p(x, t) ≈

7X
l=0

7X
q=0

e−βT
q x−βt

|Δ|

X
k∈Z4

�lqPαlq(Ψk)ej(kT
Ψ

T [xT,t]T ),

(11)
where βq = Λ

−T [log(�
ςq(x)
x ), log(�

ςq(y)
y ), log(�

ςq(z)
z )]T , β =

log(1)/Ts = 0. The reconstruction of p(x, t) out of its generalized
Fourier coefficients involves an infinite summation. In addition, to
get the sound field at another location in space we have to recompute
(11). This computational complexity is clearly too high. To reduce
the complexity, let us now limit the summation over k ∈ Z

4 in (11)
to a finite number of elements and periodically extend this finite set

over the 4-D spatio-temporal frequency space. By making the (sam-
pled) generalized spectra periodic, we are imposing a discretization
on the sound field. LetΣ be a sublattice of Ψ, denoting the lattice for
generating the periodic packing of the frequency space. Next, let Γ
denote the spatio-temporal sampling lattice imposed by making the
generalized spectra periodic and assume Δ ⊆ Γ. Then clearly we
have that Γ=2πΣ

−T . The functions p̃αlq can be calculated by,

p̃αlq(Γn)=
e−βT

Γn

N(Δ/Γ)

X
k∈VΣ(0)

|Δ|−1Pαlq(Ψk)ej(kT
Ψ

T
Γn) (12)

where β =Δ
−T log(α). From here we see that by making VΣ(0)

larger (i.e. taking more frequency samples), the finer we sample the
functions p̃αlq. Certainly we have that,

N(Δ/Γ) =
|Δ|

|Γ|
=

(2π)4|Ψ−T |

(2π)4|Σ−T |
=

|Σ|

|Ψ|
= N(Σ/Ψ)

so that the number of evaluation points N(Σ/Ψ) of the generalized
spectra, equals the number of spatio-temporal samples of the func-
tions p̃αlq. Since the functions p̃αlq are of a geometrically weighted
periodic form, we only need to evaluate them in VΔ(0). The sam-
pled sound field is thus obtained by,

p(Γn) ≈
7X

l=0

7X
q=0

�lqp̃αlq(Γn), for Γn ∈ VΔ(0). (13)

The computational complexity is given by the evaluation of (12),
limited to {n∈Z

4 :Γn∈VΔ(0)}. In [8], it is shown that the spec-
trum has much of its energy concentrated in the region ‖φ‖ ≤ |ω/c|.
Then, for a maximum temporal frequency ωb, this fact is used to
determine Σ, and therefore N(Σ/Ψ), allowing us for a trade be-
tween speed and accuracy of reconstruction. A careful examina-
tion of (12) reveals that the summation over k represents a standard
discrete Fourier transform (DFT). The complexity is drastically re-
duced if the fast Fourier transform (FFT) is used instead. In this
case, the operation will take only O(N4 log N) operations for com-
puting (12) in N(Δ/Γ) spatio-temporal positions. Recognizing that
N(Δ/Γ) = N(Σ/Ψ), then we can conclude that the method is of
complexity O(N log N) per receiver position.

5. EXPERIMENTAL RESULTS

In this section we compare the proposed approach against MISM [5].
The experiments are performed in MATLAB R©, on a PC computer
using a single CPU running at 2.4GHz. The newly proposed method
is implemented as a native m-file function and the MISM as a C++
mex-function. The computed scenario is displayed in Fig. 2(a). The
room dimensions are [Lx, Ly, Lz]

T =[4.78, 3.79, 2.83]T . The wall
reflection coefficients are �i0 = 1, and �i1 = −1 for i ∈ {y, z},
and �x0 = �x1 = 0, so that �y = �z =−1, and �x = 0. We con-
sider temporal signals bandlimited to 4KHz. The temporal sam-
pling frequency is thus set to ωs = (8000)2π. To avoid the non-
banlimited representation of the delta pulses in the MISM, we re-
place each delta pulse with the impulse response of a (8ms long)
Hanning-windowed ideal low-pass filter with cut-off frequency set
to the Nyquist frequency [9]. The post-processing high-pass filter,
suggested in [5] is disabled in the experiments to avoid biased re-
sults. The simulation length is Th = 2.058s, or equivalently in
samples, Nt = 16384. We choose the temporal-frequency sam-
pling interval to be Ωs =ωs/2Nt. The GFT parameter is set to

α=[�
ςq(y)
y , �

ςq(z)
z , 1]T=[−1,−1, 1]T for all q, which is 3-D since no

reflections are considered in the x direction. The spectral-sampling
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(a) Computed scenario
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Fig. 2: (a) 12288 measurement positions (128y,96z, red dots) at x = 2.51. The sound source is S0. The wall reflection coefficients are
�i0 =1 and �i1 =−1 for i∈{y, z}, and �x0 =�x1 =0. The proposed method took 7 minutes to complete, the MISM 3 days. (b) Experimental
results for only one line in the y direction at nz =47. (c) Comparison of both methods only for receiver ny =55 of the same line.

matrix is thus given by Ψ= diag (π/Ly , π/Lz, Ωs). The spectral-
periodicity matrix is chosen to be Σ=2Ψ diag (Ny, Nz, Nt), with
Ny = 128 and Nz = 96, which gives a good compromise between
temporal aliasing and speed of reconstruction. This directly defines
the spatio-temporal sampling lattice Γ for the sound field, with gen-
erator matrixΓ=diag

`
0.0296, 0.0294, 125×10-6

´
. In this case, the

diagonal form of Γ imposes a rectangular arrangement of the sound
field measurement positions (spatial samples). This can be seen in
Fig. 2(a), where the Ny =128 and Nz =96 measurement positions
are arranged in a plane perpendicular to the x direction at x=2.51m,
giving a total of 12288 spatial positions to be calculated. The source
S0 position is s0 =[3.98, 1.70, 0.63]T . Using (8), the generalized
Fourier spectra are obtained from the 3-D spectrum of the PAF of
the mother sources [8]. We evaluate the generalized spectrum of the
mother sources at sampling positions defined by Ψk, to obtain the
generalized Fourier coefficients. To synthesize the sound field given
by (13) and (12), first a multidimensional inverse FFT is applied on
the generalized Fourier coefficients, followed by a modulation by

e−βT
Γn. Using the MISM algorithm, we modeled individually the

RIRs from the source to each measuring position. We use a triplet
of integers ny, nz, nt, to index the sound field samples. The col-
ormap plots in Fig. 2(b) show the results only for one measurement
line in the y direction at nz =47, and time samples 0 ≤ nt ≤ 256.
Additionally in Fig. 2(c), a plot is given where we compare the full,
2.058s in length RIRs, only for measurement position ny = 55 for
the same line. As it is seen, the spatio-temporal “locations” and am-
plitudes of the reflections are perfectly modeled by the newly pro-
posed method. The discrepancies that are observed between both
approaches, are caused by temporal aliasing, which can be made ar-
bitrarily small by decreasing the spectral sampling interval Ωs. The
newly proposed method took 393s (or 6.5 minutes) to compute the
full scenario, the MISM took 288072s (or 3.3 days) to complete,
showing the contrasting difference in complexity.

6. CONCLUDING REMARKS

We derived a generalized Fourier series representation for enclosed
sound fields that can be mathematically modeled in terms of a lattice
structure. The representation is directly obtained by a sampling con-
dition on the continuous generalized spectra of the free-field sound
field. This leads to a fast method for multichannel modeling of the
sound field inside the enclosure. We give results for box-shaped
rooms where the generalized spectra are readily available, show-
ing the huge advantage in computational complexity when compared
against the MISM. To efficiently determine the generalized Fourier

coefficients is however the topic of current research. The method
can be extended to account for other room geometries, as long as the
room space is defined by a convex polyhedron and the sound field
can be modeled by a periodic packing. However, further research is
needed to derive a general way to determine valid periodic packings
of virtual sources given the desired room geometry (see e.g. [10]).
The newly proposed framework is of special importance in the do-
main of small-room acoustics, when large amounts of receiver posi-
tions need to be calculated, or when a set of moving receivers needs
to be obtained, making the method suitable for scalable multichannel
applications.
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