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ABSTRACT

Estimation of the room geometry from spatial room impulse re-
sponses is studied. An algorithm for estimating the geometry is
presented. The algorithm does not require any a priori information
on the room shape, number of walls, or order of the reflections,
but deduces the set of planes that explain the measured source and
image-source locations and covariances iteratively. The algorithm is
demonstrated with real data experiments.

Index Terms— Room geometry estimation, room impulse re-
sponse, reflection

1. INTRODUCTION

The geometry of the room is one of the most essential parts of room
acoustic modeling. Besides the prediction of the acoustics of rooms,
the room acoustic models can be used for example to enhance source
localization performance [1].

Estimation of the room geometry can be divided into three
subtopics, localization of reflections, i.e. the image-sources, estima-
tion of the surface parameters, i.e plane points and normals, and the
estimation of room geometry. In principle, any general localization
method can be used to localize the reflections. As an example, in [2]
reflections are localized using sound intensity vectors and time of
arrival (TOA).

The locations of the reflections can be used together with the es-
timated or a priori known source location to deduce the surface pa-
rameters. This requires the knowledge of the order of the reflections.
Plane parameters are estimated in [3] by rotating a B-format micro-
phone around a loudspeaker, directed towards the microphone. The
estimation is based on the TOA and the direction of arrival (DOA)
of the first arriving reflection in each direction. The TOA and DOA
measurements are grouped using hierarchical clustering to avoid es-
timating the same plane multiple times. Moreover, in [4] the plane
parameters are estimated with a common tangent algorithm. The
same approach is applied in [5] and several other publications for
the estimation of plane parameters.

The actual room geometry estimation algorithms combine the
locations of reflections and source as well as the orders of the reflec-
tions. One such algorithm, which uses only one room impulse re-
sponse, has been proposed in [6]. The algorithm requires the knowl-
edge of the order of the first and second order reflections and of their
arrival times. Moreover, in [7] a constrained room model and l1-
regularized least-squares method is applied to fit 3-D shoebox model
to a set of measured impulse responses. The number of walls is as-
sumed to be known a priori. In addition, in [3] the clustering of
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the TOA and DOA measurements constitutes as the room geometry
estimation algorithm. The geometry estimation presented in [3], as
well as in [4] and [5], use the assumption that all the detected reflec-
tions are of first order. To the understanding of the present authors
all the previous approaches use a priori information either on the
number of the walls, shape of the enclosure, or on the order of the
reflections. Especially the a priori assumption on the order of the re-
flections is not feasible, since in most of the practical situations the
earliest arriving second order reflection arrives before the latest first
order reflection.

Here a room geometry estimation algorithm is proposed that is
able to deduct the room geometry without any of the above listed
a priori information. The algorithm deduces iteratively the set of
planes that has produced a set of estimated reflection locations and
covariances. Rest of the article is organized as follows. Section 2,
presents the estimation of the reflection locations and of their covari-
ance matrices from the spatial room impulse responses. In Section 3,
the geometry that explains the estimated locations and covariances
of the reflections is estimated with an iterative maximum likelihood
algorithm. Experiments are conducted with real data in Section 4.
Section 5 discusses the results and concludes the article.

2. ESTIMATION OF SOURCE AND REFLECTION
LOCATIONS

2.1. Reflection signal model

In this paper, a room impulse response measured with a microphone
at location rn and a loudspeaker at location x is considered as a sum
of the direct sound and individual reflections:

hn(t)
�
= h(rn,x; t) =

[
K∑

k=0

hk,n(t)

]
+ wn(t)

=

[
K∑

k=0

(∫ ∞

−∞
Hk,n(ω)e

jωtdω

)]
+ wn(t), (1)

where t is time, ω is angular frequency, n is the index for micro-
phone, k = 0 is the direct sound, k = 1, . . . ,K are the reflec-
tions, wn(t) is measurement noise independent for each microphone
and of the signal and distributed according to normal distribution for
each microphone. Moreover, hk,n(t) and Hk,n(ω) are the time and
the frequency domain presentation of the direct sound and of the
reflections.

The applied microphone array is assumed to have a small aper-
ture size compared to the dimensions of the room. Then the impulse
responses can be divided into short time windows which each in-
clude only one reflection. In realistic situations this is true for the
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first arriving reflections up to some time instant. Therefore, here this
windowed reflection signal is considered as

Hk,n(ω) = Ak,n(ω)S(nk, ω) exp{−jωtk,n(xk )}+Wn(ω) (2)

where Wn(ω) ∈ C is the frequency domain presentation of the noise
signal wn(t), and S(nk, ω) ∈ C is the impulse response of the loud-
speaker to the direction nk of the reflection location xk, Ak,n(ω) is
the gain of the reflection or of the direct sound, and the time of arrival
(TOA) is given for a reflection location xk as

tk,n(xk)
�
= t(rn;xk) = c−1‖rn − xk‖, (3)

where c is the speed of sound. The gain factor is dependent at least
on the properties of the surfaces s = 1, . . . , S which the sound
wave has encountered, frequency dependent air absorption, which
is dependent on the distance of the reflection path distance, the at-
tenuation according to the 1/r-law by the distance of the reflection
path, and the directivity of the microphone. Here ideal specular
reflections are assumed, the microphones are omni-directional and
other phenomena affecting the gain factor are assumed to be linear.
Then the gain factor affects only the amplitude of the reflection, i.e.
Ak,n(ω) ∈ R and does not contribute to the delay of the reflection.

2.2. Maximum likelihood estimation of time of arrival

Time delay estimation framework presented in [8] is applied to es-
timate the TOA of the reflection and of the direct sound. The cross
correlation function between the measured reflection signal hk,n(t)
and the a priori measured source signal s(nk, t) is calculated via the
generalized correlation function [8]

Rs,hk,n(t) = F−1{WML
s,hk,n

(ω)Gs,hk,n(ω)}. (4)

The maximum likelihood weighting for cross correlation is given as
[8]

WML
s,hk,n

(ω) =
1

|Gs,hk,n(ω)|
Cs,hk,n(ω)

[1− Cs,hk,n(ω)]
. (5)

Cs,hk,n(ω) = ‖Gs,hk,n(ω)‖2/[Gs,s(ω)Ghk,n,hk,n(ω)] is the mag-
nitude squared coherence and the spectral densities G(·) are writ-
ten based on the assumed reflection signal model as Gs,s(ω) =
‖S(ω)‖2, Gs,hk,n(ω) = Ak,n(ω)‖S(ω)‖2 exp{−jωtk,n(xk)},

and Ghk,n,hk,n(ω) = ‖Ak,n(ω)S(ω)‖2 + ‖Wn(ω)‖2, since the
source signal and noise are independent. Then, the ML weighting
for the auto-correlation method is given as

WML
s,hk,n

(ω) = · · · = Ak,n(ω)

‖Wn(ω)‖2 . (6)

In practical situations an estimate of the noise ‖Ŵn(ω)‖2 is mea-
sured from the beginning of the impulse response where there is no
signal and the gain is then estimated as

Âk,n(ω) =

√(
‖Ĥk,n(ω)‖2 − ‖Ŵn(ω)‖2

)
/‖Ŝ(ω)‖2 when

‖Ĥk,n(ω)‖2 > ‖Ŵn(ω)‖2 and 0 otherwise. Here ·̂ denotes a mea-
surement. The maximum argument of the cross correlation is then
the TOA estimate, i.e t̂k,n = argmax

t
{Rs,hk,n(t)}.

2.3. Maximum likelihood estimation of the source and reflection
positions

The TOA estimation errors are assumed to be uncorrelated and have
normally distributed errors with variance σ2

k,n. Then, the maximum

likelihood estimation function for location with TOA estimates is
given as [9, Ch. 7]

p(x|t̂k,Σk) =
exp(− 1

2
[t̂k − tk(x)]

TΣ−1
k [t̂k − tk(x)])

(2π)(N)/2
√

det(Σk)
, (7)

where N is the number of microphones, t̂k = [t̂k,1, t̂k,2, . . . , t̂k,N ]T

are the TOA estimates, tk(x) = [tk,1(x), tk,2(x), . . . , tk,N (x)]T

are the true TOAs, and Σk = diag
(
σ2
k,1, σ

2
k,2, . . . , σ

2
k,N

)
is the

TOA error covariance matrix with individual variances σ2 on the
diagonal. The maximum argument of this MLE-TOA function is the
ML estimate for the reflection location x̂k = argmax

x
{p(x|t̂k,Σk)}.

Since the problem is non-convex the solution can typically be found
only using non-convex optimization methods and here the maximum
is searched using Levenberg-Marquardt-algorithm.

2.4. Estimation of the error covariances

The minimum covariance of the localization error, i.e. the Cramér-
Rao lower bound (CRLB) is given by the inverse of the Fisher infor-
mation [9, Ch. 3]. In the TOA-based localization the CRLB is given
by

Σ(x) ≥ J−1(x) =

[[
∂

∂x
t(x)

]T

Σ−1

[
∂

∂x
t(x)

]]−1

. (8)

The minimum variance of TOA estimation is given by the inverse of
its Fisher information, and by using the knowledge of the spectral
densities the Fisher information simplifies to

J(t) =
T

π

∫ ∞

0

ω2 Cs,h(ω)

1− Cs,h(ω)
dω =

T

π

∫ ∞

0

ω2
SNR(ω)dω, (9)

where SNR(ω) = ‖A(ω)S(ω)‖2
‖W (ω)‖2 is the signal-to-noise ratio. Since

the source signal and the noise term are assumed uncorrelated the
SNR of the current reflection signal can be estimated as

ŜNRk,n(ω) =
(
‖Ĥk,n(ω)‖2 − ‖Ŵn(ω)‖2

)
/‖Ŵn(ω)‖2. (10)

Then the inverse of the error covariance matrix for TOA estimation
is estimated as

Σ̂−1
k = diag

(
σ̂−2
k,1, . . . , σ̂

−2
k,N

)
= diag

(
Ĵ(tk,1), . . . , Ĵ(tk,n)

)
,

(11)
where Ĵ(tk,n) for nth microphone and kth reflection is calculated
using Eq. (10) as the SNR estimate in Eq. (9). This TOA error co-
variance matrix is then used in Eq. (8) to estimate the covariance
matrix of the localization error.

3. 3D GEOMETRY ESTIMATION

Room geometry estimation is based on the estimated image sources,
x0,x1, . . . ,xk in order of distance from the microphone array at

the origin with corresponding estimated error covariances Σk
�
=

Σ(xk). The reflection order of a given reflection is unknown, but
it is assumed that x0 is the source. As is well-known, in the image
source model, image sources are generated from the original source
by reflecting it with respect to surfaces. A plane π : x · n + a = 0,
where ‖n‖ = 1 is the plane’s normal, generates the first order image
source x−2(a+x ·n)n that can be reflected again in another plane
to produce a higher order image source. Assuming the theory valid

514



and neglecting visibility, the process of iterating reflections of the
source away from the microphone array generates all the observed
image sources.

Supposing a convex space bounded by a few dominant planes,
the geometry estimation method seeks to find the planes and the re-
flection paths generating the observed image sources. A heuristic
greedy method is used for computational efficiency. The method
starts with an empty set of planes and backtraces a reflection path
from each xi to x0 adding new planes when existing planes can not
account for xi. The backtracing is searching multiple order paths
through existing planes that have been generated in the earlier steps.
The image sources are processed in order of increasing distance from
the source. When backtracing from xi, the method tries to find a
low-order reflection path from xi to x0. When a plausible path does
not exist using the present planes, a new plane is added to connect
xi to some xj with j < i. The process continues until all image
sources have a reflection path from the source. The result is a set
of planes giving the estimated room geometry and a reflection path
from each xi to x0.

The algorithm considers planes between two image sources, that
is, planes πij with normals given by nij = ‖xi − xj‖−1(xi −
xj) and constants by aij = −‖xi − xj‖−1(xi + xj)/2. Such a
plane is uncertain, because it is formed between two uncertain im-
age sources; its uncertainty can be expressed using a covariance ma-
trix Σπ for the parameters (n, a). Forming the Jacobian matrices
Ji and Jj from xi and xj to (n, a) and using standard covariance
propagation gives the plane’s covariance

Σπ = JiΣiJ
T
i + JjΣjJ

T
j .

Note that general plane parameters are homogeneous, but forming
the planes with unit normals causes variance to vanish in directions
that change ‖n‖ in Σπ giving a meaningful covariance for the plane.
Also, reflection is simpler to deal with using unit normals. If π re-
flects x to x′, the covariances of π and x are Σπ and Σx, and the
Jacobian matrices of x′ with respect to π and x are Jπ and Jx, re-
spectively, then covariance propagation again gives the reflection’s
covariance Σx′ = JπΣπJ

T
π + JxΣxJ

T
x . A reflection from x to

another point y is ruled out if the Mahalanobis distance

D2 = (x′ − y)T (Σx′ +Σy)
−1(x′ − y)

is large. Considering x′ and y multivariate normal, the distance D2

follows a χ2 distribution with 3 degrees of freedom. If D2 exceeds a
confidence region’s upper bound obtained from the inverse cumula-
tive χ2 distribution, then the corresponding confidence ellipsoid for
x′ − y does not include 0 and x′ �= y with the chosen degree of
confidence, assuming that the linearizations are valid. A reflection
between image sources in a plane is considered plausible if reflec-
tions both ways have small Mahalanobis distances and are the best
reflections for both sources. Initially the algorithm finds all plausible
reflection pairs for all planes πij .

While backtracing the reflection path for an image source xi, the
algorithm first considers single reflections from image sources with
paths to x0 using the current set of planes and chooses a plausible re-
flection that minimizes the reflection order of xi and breaks ties with
D2. If no plausible single reflection is found, the algorithm consid-
ers two reflections using the current planes using covariance propa-
gation to deal with uncertainty over multiple reflections and chooses
similarly the option with smallest reflection order and breaks ties
with D2. If a plausible path is not found even then, the algorithm
adds a new plane from the set of predefined planes, choosing a plane
that connects xi to some xj with j < i. The plane is chosen to have

Table 1: Hand measured dimensions and normals of the planes in
the experiment as well as microphone array dimensions. The spacing
between each axis is equal to 100 mm.

Microphone #

Dimension # 1 2 3 4 5 6

x [mm] 50 -50 0 0 0 0
y [mm] 0 0 50 -50 0 0
z [mm] 0 0 0 0 50 -50

Plane parameters in the experiments

Refl. # nx[·] ny [·] nz [·] d [m]

1 -1.00 0.00 0.00 3.54
2 0.00 -1.00 0.00 4.68
3 0.00 0.00 -1.00 1.88
4 1.00 0.00 0.00 3.55
5 0.00 1.00 0.00 4.67
6 0.00 0.00 1.00 1.88

least some support in the data set (i.e. more than one plausible re-
flection), to minimize the reflection order of xi and breaks ties with
the number of plausible reflections in the data set with respect to that
plane.

4. REAL ROOM EXPERIMENTS

Real data experiments were conducted in a shoebox-shaped class
room (7.09m×9.35m×3.76m) stripped of chairs and tables. Skele-
ton model of the room is shown in Fig. 1 and the hand-measured
values for the plane parameters are given in Table 1. As illustrated
in Fig. 1, there was a closet on the west wall, an extrusion, a win-
dow, and a door on the south wall, and a whiteboard and a door on
the east wall. The walls of the room are of painted sheet rock and
the floor is concrete covered with a plastic mat. These materials
have a reasonably low absorption coefficient and it is expected that
they produce clearly identifiable reflections to the impulse responses.
However, the ceiling of the room has been treated with absorptive
panels, which reduces the amplitude of the reflections. Moreover,
lamps, ventilation, and other equipment typical for a modern class
room are hanging from the ceiling.

Impulse responses were measured using sine-sweep signals with
Genelec 1029A and G.R.A.S vector intensity probe VI50 with the
geometry presented in Table 1. The loudspeaker was located in the
back of the room and the microphone array in front. The experiment
was repeated four times with different locations for the loudspeaker
and the microphone array. The height of the loudspeaker and array
was from 1m to 1.5 m. In addition, the sampling frequency was set
to 48 kHz and the speed of sound was estimated to be 345.2 m/s
based on temperature and humidity.

The sparse impulse response technique proposed in [2] was used
for measuring the impulse responses. Impulse responses to direc-
tions from 0 to 360 degrees between 10 degrees around the z-axis
were measured. The impulse responses were then divided into short
time windows of size 1.5 ms with an overlap of 95 %. The maxi-
mum direction that produces the highest absolute pressure on aver-
age in the microphone array was selected to represent the impulse
response during that time window, similarly as described in [2]. The
use of this technique ensures that the source signal is similar to all
directions and also allows better temporal and spatial separation be-
tween the reflections. In addition, only one impulse response of the
loudspeaker S(n0, ω) to the direction n0 that produces the highest

515



Fig. 1: Experimental setup.

pressure is required in the TOA estimation.

The location of the direct sound and of those reflections which
are local maxima in absolute pressure-wise in the compound sparse
response (described in [2]), and have a SNR higher than 30 dB is cal-
culated as stated in Section 2. On average about 27 reflections were
found by using this criterion. The room geometry is then estimated
individually for all four loudspeaker-microphone array location pairs
using the technique described in Section 3. The limiting parameter
for the χ2 distribution is set to 0.9 in the experiments.

The results of the experiments are shown in Fig. 2, where the
estimated and true room geometries are illustrated with lines and the
plane parameters (normal n and distance d) with respect to the center
of the room are given in a table. In the first three cases six planes
are found and the geometry is estimated with a good accuracy. In
the last case seven planes are found and the ceiling is not estimated
well. This is due to the fact that the absorptive panels attenuate the
first order ceiling reflection in this setup so much that it can not be
found. In the other setups the absorptive panels are not directly on
the reflection path.

5. CONCLUSIONS

Room geometry is required in room acoustic prediction and can ben-
efit, for example, source localization. This article studied the esti-
mation of room geometry from measured room impulse responses.
A method for deducing the room geometry was presented. Unlike
previous approaches, the proposed method does not require a priori
knowledge of the number of walls, room shape, or the order of the
reflections. The method is based on iteratively searching planes that
explain the measured source and image-source locations and their
covariances. The results from real room experiments show that the
methods works well in realistic conditions. The use of higher order
reflections to enhance the room geometry estimation is in the future
work of the present authors.

———————–
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