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ABSTRACT

A novel multi-label annotation method is proposed and applied to
music tagging. Each music recording is represented by its auditory
temporal modulations (ATMs). Given a set of training music record-
ings represented by the tag-music recording matrix having zero-one
(indicator) vectors of the tags associated with each recording in its
columns along with the matrix of the ATM representations in its
columns, a low-rank weight matrix is sought, such that the tag-music
recording matrix is expressed as the product of the weight matrix and
the matrix of the ATM representations plus an error matrix. Clearly,
such a weight matrix captures the relationships between the labels
(i.e., tags) and the audio features. It can be derived by solving a con-
vex nuclear norm minimization problem, if the tag-music recording
matrix and the matrix of the ATM representations are assumed to
be jointly low-rank. Having found the weight matrix, the annotation
vector for labeling any test music recording can be obtained by mul-
tiplying the weight matrix with its ATM representation. The just out-
lined method is referred to as low-rank representation based multi-
label annotation (LRRMA). The LRRMA outperforms the state-of-
the-art auto-tagging systems, when applied to the CAL500 dataset
in a 5-fold cross-validation experimental protocol.

Index Terms— Automatic Music Tagging, Multi-label Classifi-
cation, Low-Rank Representation, Nuclear Norm Minimization.

1. INTRODUCTION

The development of powerful large-scale semantic music discovery
engines is of paramount importance in Web 2.0, since such engines
allow efficient music browsing and recommendation [1]. Current
music oriented recommendation services, such as last.fm1 and Pan-
dora2 employ social tags for semantic music representation. Social
tags are text-based labels, provided by other users, that encode se-
mantic information related to music (e.g., instrumentation, genres,
emotions). The major drawbacks of the aforementioned services are:
1) a newly added music recording must be tagged manually, before
it can be retrieved [2], which is a time consuming and expensive pro-
cess and 2) unpopular music recordings may not be tagged at all [1].
Content-based automatic tagging of music could be exploited to mit-
igate the just mentioned drawbacks and complement the set of tags
provided by humans.

A considerable volume of research in automatic music tagging
(also known as automatic multi-label music annotation or autotag-
ging) has been accumulated [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The majority
of such autotagging systems consists of two stages, namely a music

1http://www.last.fm/
2http://www.pandora.com/

representation stage and a machine learning one. In the first stage,
the music signal is represented by either low- or mid-level audio fea-
tures. Music is frequently modeled by the long-term statistical dis-
tribution of short-time features. Such features include timbral tex-
ture features, rhythmic features, pitch content, or their combinations
yielding a bag-of-features (BOF) representation [1, 2, 3, 4, 5, 6, 7].
This BOF representation ignores the temporal structure of music and
thus fails to capture music dynamics (e.g., tempo and beat) or tem-
poral structures (e.g., arpeggios), which are important characteristics
of music. On the contrary, mid-level music representations, such
as the auditory temporal modulations (ATMs) [11] capture both the
timbral and the temporal structure of music [8, 9]. At the machine
learning stage, the automatic music tagging is treated as multi-label
classification problem and a variety of algorithms has been exploited
in order to associate the tags with the audio features. For instance,
music tag prediction may be treated as a set of binary classification
problems, where standard classifiers, such as the support vector ma-
chines [5, 7] or ada-boost [4] can be applied. Furthermore, proba-
bilistic autotagging systems have been proposed, attempting to infer
the correlations or joint probabilities between the tags and the audio
features [2, 10, 6]. Recently, autotagging systems have been pro-
posed based on subspace learning [8, 9]. That is, linear and multilin-
ear subspace learning algorithms efficiently harness the multi-label
information for feature extraction, while the multiple labels of train-
ing music recordings are propagated to the test music recordings,
assuming either sparse or dense representations.

In this paper, a novel automatic music tagging method is pro-
posed. Given a set of training music recordings represented by the
tag-music recording matrix having zero-one (indicator) vectors of
the tags associated with each recording in its columns along with
the matrix of the ATM representations in its columns, a low-rank
weight matrix is sought, such that the tag-music recording matrix is
expressed as the product of the weight matrix and the matrix of the
ATM representations plus an error matrix. The weight matrix can
be derived by solving a convex nuclear norm minimization problem,
if the tag-music recording matrix and the matrix of the ATM rep-
resentations are assumed to be jointly low-rank. In particular, an
algorithm for nuclear norm minimization is developed by employ-
ing the alternating direction augmented Lagrange multiplier method
[12, 13]. The derived low-rank weight matrix is expected to capture
the relationships between the feature space defined by the ATMs and
the semantic space defined by the labels. Accordingly, the annota-
tion vector for labeling any test music recording can be obtained by
multiplying the weight matrix with its ATM representation (or any
audio feature vector in general). The proposed method is referred to
as low-rank representation-based multi-label annotation (LRRMA).
The performance of the LRRMA is assessed by conducting exper-

497978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



iments on the CAL500 dataset [2]. The reported experimental re-
sults demonstrate the superiority of the proposed framework over the
state-of-the-art autotagging systems on the CAL500 dataset, when
5-fold cross-validation is applied.

The paper is organized as follows. In Section 2, basic notation
conventions are introduced. The multi-label annotation framework,
that is based on the low-rank representations is detailed in Section 3.
Experimental results are demonstrated in Section 4. Conclusions are
drawn and future research direction are indicated in Section 5.

2. NOTATIONS

Throughout the paper, matrices are denoted by uppercase boldface
letters (e.g., X,Y), vectors are denoted by lowercase boldface let-
ters (e.g., x), and scalars appear as lowercase letters (e.g., i, μ, ε). I
denotes the identity matrix of compatible dimensions. The ith col-
umn of X is denoted as xi. The set of real numbers is denoted by R,
while the set of nonnegative real numbers is denoted by R+.

A variety of matrix norms will be used. The matrix �0 and
�1 norms are denoted by ‖X‖0 (i.e., the number of nonzero en-
tries in X) and ‖X‖1 =

∑
i

∑
j |xij |, respectively. ‖X‖F =√∑

i

∑
j x

2
ij =

√
tr(XTX) is the Frobenius norm, where tr(.)

denotes the trace of a square matrix. The nuclear norm of X (i.e.,
the sum of singular values of a matrix) is denoted by ‖X‖∗. The �∞
norm of X, denoted by ‖X‖∞, is defined as the element of X with
the maximum absolute value.

3. MULTI-LABEL MUSIC ANNOTATION BY LOW-RANK
REPRESENTATION

Each music recording is modeled by its slow auditory temporal mod-
ulations (ATMs) [11]. The ATMs are obtained by modeling the path
of human auditory processing as a two-stage process. In the first
stage, which models the early auditory system, the acoustic signal is
converted into a time-frequency distribution along a logarithmic fre-
quency axis, the so-called auditory spectrogram. In this paper, the
early auditory system is modeled by employing Lyons’ passive ear
model [14]. The auditory spectrogram is then downsampled along
the time axis by a factor of 5. The underlying temporal modulations
of the music signal are derived by applying a biorthogonal wavelet
filter along each temporal row of the auditory spectrogram, where
its mean has been previously subtracted, for a set of 8 discrete rates
r ∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz ranging from slow to fast tem-
poral rates [11]. Thus, the entire auditory spectrogram is modeled by
a three-dimensional (3D) representation of frequency, rate, and time,
which is averaged along the time axis yielding a two-dimensional
representation.

An ensemble of N training music recordings is represented by
a 3D nonnegative array (i.e., 3rd order nonnegative tensor) of di-
mensions 96× 8×N , which is then converted into the data matrix
X̂ ∈ R

768×N
+ by taking the transpose of the unfolded tensor along

the samples mode1. The entries of X̂ are further post-processed as

follows: First, each row of X̂ is normalized to the range [0, 1] by
subtracting from each entry the row minimum and then by dividing
it with the difference between the row maximum and the row mini-
mum. The columns of X̂ are next normalized in order to have unit
�2 norm. Accordingly, the nth music recording is now represented

1The tensor unfolding can be implemented in Matlab by employing the
tenmat function of the MATLAB Tensor Toolbox available at: http://
csmr.ca.sandia.gov/˜tgkolda/TensorToolbox/.

by the nth column of the normalized ATM representation matrix
X = [x1,x2, . . . ,xN ] ∈ R

d×N
+ with d = 768, that is xn ∈ R

d
+,

n = 1, 2, . . . , N . Let Y ∈ {0, 1}V ×N be the tag-music recording
matrix, where V indicates the cardinality of the tag vocabulary. Ob-
viously, yij = 1 if the jth recording is labeled with the ith tag in the
vocabulary and 0 otherwise. Since, xj can be labeled by multiple
labels, more than one non-zero elements may appear in yj .

Given a set of training recordings along with the associated la-
bel vectors, the goal is to infer how the label vectors are associated
to the ATM representation of the recordings. To this end, it is as-
sumed that the jth recording label vector yj can be obtained by
yj = Wxj + ej , where W ∈ R

V ×d is a weight matrix, which
captures the relationships between the audio feature space and the
semantic space defined by the labels and ej ∈ R

V is a bias or er-
ror term. Therefore, for the entire training set, the label vectors are
modeled by Y = WX + E. Building on recent advances in low-
rank representations [13] and matrix completion [15], we further as-
sume that the weight matrix W is low-rank and the error matrix E
is sparse. The underling assumption here is that the tag-recording
matrix Y and the matrix of the ATM representations X are jointly
low-rank. This assumption is possible in many pattern recognition
problems (e.g., clustering, classification). Indeed, in content-based
audio analysis, one assumes that the data matrix formed by the au-
dio features is low-rank in order to apply say principal component
analysis, while in context-based audio analysis (e.g., the tags-based
retrieval in social networks) one assumes that the tag-recording ma-
trix is low-rank in order to apply say latent semantic analysis. Here,
we assume that content and context are interrelated, which naturally
leads to assume that the tag-recording matrix and the matrix of ATM
representation are jointly low-rank.

Based on the aforementioned assumptions, the low-rank matrix
W and the sparse matrix E can be found by solving the optimization
problem:

argmin
W,E

rank(W) + λ‖E‖0 subject to Y = WX+E, (1)

where λ > 0 is a regularization parameter. The optimization prob-
lem (1) is difficult to be solved due to the discrete nature of the
rank function and the �0 matrix norm. A convex relaxation of (1)
is [13, 15]:

argmin
W,E

‖W‖∗ + λ‖E‖1 subject to Y = WX+E. (2)

Problem (2) can be solved iteratively by employing the Alternating
Direction Augmented Lagrange Multiplier (ADALM) method [12],
i.e.,:

argmin
W,J,E

‖J‖∗ + λ‖E‖1 subject to Y = WX+E, W = J,

(3)
which can be solved by minimizing the augmented Lagrange func-
tion [12]:

f(W,J,E,Λ1,Λ2) = ‖J‖∗ + λ‖E‖1
+ tr

(
ΛT

1 (Y −WX−E)
)
+ tr

(
ΛT

2 (W − J)
)

+
μ

2
‖Y −WX−E‖2F +

μ

2
‖W − J‖2F , (4)

where Λ1,Λ2 are the Lagrange multipliers and μ > 0 is a penalty
parameter. The minimization of (4) with respect to W, J, and E can
be performed in an alternating fashion by first fixing W and E and
updating J, next by fixing J and E and updating W, then by fixing
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J and W and updating E, and finally updating the Lagrange multi-
pliers. The ADALM method for the minimization of (2) is outlined
in Algorithm 1. Its convergence has been demonstrated in [16].

Algorithm 1 Solving (2) by ADALM.

Input: Training matrix X ∈ R
d×N , the label matrix Y ∈ R

V ×N ,
and the parameter λ.
Output: Weight matrix W ∈ R

V ×d and error matrix E ∈ R
V ×N .

1: Initialize: W = J = E = 0, Λ1 = 0, Λ2 = 0,

μ = 10−6, ε = 10−8,Q =
(
I+XXT

)−1
.

2: while not converged do
3: Fix W,E,Λ1,Λ2 and update J by

J = argmin 1
μ
‖J‖∗ + 1

2
‖J− (W +Λ2/μ)‖2F .

4: Fix J,E,Λ1,Λ2 and update W by
W =

(
(Y −E)XT + J+ (Λ1X

T −Λ2)/μ
)
Q.

5: Fix J,W,Λ1,Λ2 and update E by
E = argmin λ

μ
‖E‖1 + 1

2
‖E− (Y −WX+Λ1/μ)‖2F .

6: Update the Lagrange multipliers by
Λ1 = Λ1 + μ(Y −WX),
Λ2 = Λ2 + μ(W − J).

7: Update μ by μ = min(1.2 · μ, 106).
8: Check convergence conditions

‖Y −WX‖∞ < ε and ‖W − J‖∞ < ε.
9: end while

In Algorithm 1, Step 3 can be solved via the singular value
thresholding operator [17], Step 4 amounts to solving the follow-
ing unconstrained least-squares problem W = argminW f(W,J,

E,Λ1,Λ2) whose solution involves Q =
(
I+XXT

)−1
, while

Step 5 is solved by the shrinkage operator [15]. The singular value
thresholding operator is defined for any matrix M as [17]: Dτ [M] =
USτV

T with M = UΣVT being the singular value decomposi-
tion (SVD) and Sτ [m] = sgn(m)max(|m| − τ, 0) being the shrink-
age operator [15], which can be applied to a matrix in an element-
wise manner. The computational cost of Algorithm 1 is that of the
SVD (i.e., O(d · N2)) being its most computationally demanding
task.

The weight matrix W, obtained by Algorithm 1, captures the
semantic relationships between the label space and the audio feature
space. In music tagging, the semantic relationships are expected to
propagate from the feature space to the label vector space. Let us
denote by x̃ ∈ R

d the audio feature representation (ATMs here)
of a test music recording and by a ∈ R

V the label vector of this
recording. Having found W, a can be obtained by: a = Wx̃.
The labels associated with the largest values in a form the tag vector
recommended for annotating the test music recording.

4. EXPERIMENTAL EVALUATION

The performance of the proposed method for automatic music tag-
ging is assessed by conducting experiments on the CAL500 dataset
[2]. The CAL500 is a corpus of 500 tracks of Western popular music,
each of which has been manually annotated by at least three human
annotators, who employ a vocabulary of 174 tags. The tags used in
CAL500 dataset annotation span 6 semantic categories, namely in-
strumentation, vocal characteristics, genres, emotions, acoustic qual-
ity of the song, and usage terms (e.g., I would like to listen this song
while driving, sleeping) [2].

The length of the tag vector returned by the proposed method
is set to 10. That is, each test music recording is annotated with

10 tags. Three metrics, namely the mean per-word precision and
the mean per-word recall and the F1 score are employed in order to
assess the annotation performance of the proposed automatic music
tagging system whose definitions are as follows [2]: Per-word preci-
sion is defined as the fraction of songs annotated by the system with
label w that are actually labeled with word w. Per-word recall is de-
fined as the fraction of songs actually labeled with word w that the
system annotates with label w. The F1 score is the harmonic mean

of precision and recall. That is, F1 = 2 · precision·recall
precision+recall

yielding

a scalar measure of overall annotation performance.
Since the LRRMA requires a significant number of training sam-

ples, the evaluation procedure defined in [10] is adopted. That is, the
experiments are restricted to 78 tags, which have been employed to
tag at least 50 music recordings in the CAL500 dataset.

In Figure 1, the mean precision, the mean recall, and the F1

score is plotted as a function of the parameter λ, which involved in
the LRRMA. The performance of the LRRMA is relatively constant
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Fig. 1. Mean LRRMA results for various λ values on the CAL500
dataset: (a) mean precision, (b) mean recall, and (c) F1 score.

for a wide range of λ values, while the best performance in terms of
F1 score is achieved for λ = 1.

In Table 1, quantitative results for automatic music tagging
based on audio features only are summarized. The reported per-
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Table 1. Mean annotation results on the CAL500 Dataset.
System Protocol Precision Recall F1 Score
LRRMA 5FCV, V = 78 0.500 (0.004) 0.234 (0.0005) 0.319
PARAFAC2 [9] 5FCV, V = 78 0.445 (0.002) 0.223 (0.004) 0.297

HEM-GMM [10] 5FCV, V =78 0.490 0.230 0.260

HEM-DTM [10] 5FCV, V =78 0.470 0.250 0.300

CBA [6] as evaluated in [10] 5FCV, V =78 0.410 0.240 0.290

formance metrics are mean and standard errors (i.e., the sample
standard deviation divided by the sample size) inside parentheses
computed from 5-fold cross-validation (5FCV) with a vocabulary
size V = 78 on the CAL500 dataset. By inspecting Table 1, it is
seen that the LRRMA clearly exhibits the best performance with
respect to the per-word precision, per-word recall, and F1 score
among the state-of-the-art auto-tagging systems, that is compared
to, when 5-fold cross-validation is applied. Unlike, the direct perfor-
mance comparisons for the methods listed in Table 1, wich employ
the same protocol, fair comparisons cannot be made between the
proposed method and others (e.g., [2, 8]) due to different protocols
used.

5. CONCLUSIONS

An effective automatic music tagging method has been proposed that
resorts to auditory temporal modulations for music representation,
while the relationships between the tags and the features are inferred
by a low-rank weight matrix. The results reported advance the state-
of-the-art auto-tagging systems in the CAL500 dataset when 5-fold
cross-validation is employed.

In the future, the performance of the LRRMA will be inves-
tigated by exploiting conventional audio representations such as
mel-frequency cepstral coefficients and chroma features. Further-
more, the evaluation of the LRRMA in tag-based music retrieval
will be conducted.
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