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ABSTRACT

This paper presents new approaches to improve the detection

of two key audio events in a sport game (tennis) using contex-

tual information. When analysing a tennis match using only

audio information, the sound of the ball being struck and the

occurrence of a line judge’s shout can be obscured by play-

ers’ grunts or shouts. Furthermore, if models of these two im-

portant events are trained from labelled training-data, there is

often considerable audio mis-match with the test-data, which

means that detection performance can be very poor. To han-

dle this problem, we regard the players’ grunts as useful con-

textual information that indicates the position of the events

of interest. We show how to use an unsupervised learning

method to build an improved model of the ball-hit event us-

ing grunt information. We can then use high-level informa-

tion to distinguish grunts from line-judge shouts. This ap-

proach gives simultaneous improvements in detection of both

ball-hits and line judge shouts, and is portable between differ-

ent matches, unlike approaches based on the use of manually

labelled training-data.

Index Terms— Audio event, unsupervised detection

1. INTRODUCTION

Our long-term goal is to develop machines with the ability to

analyse and participate in complex human activities by infor-

mation acquisition and learning. We begin with the analysis

of tennis games. which contain rich and tightly linked audio

and visual information. Our current focus is the detection of

key audio information, such as the event of the racquet hitting

the ball, or the call from a line judge ball to indicate a fault or

a ball that is “out”.

However, when processing some tennis matches, we have

found that ball hit detection performance is often very poor

for two reasons:

1. acoustic mismatch between the training and the test

data;

2. interfering noise in the form of players’ grunts, foot

steps, and general background noise.

Most previous work [1, 3] in the analysis of tennis games

ignores these issues, which means that portability of tech-

niques across games is impossible (because of mismatch), and

the practical difficulty of dealing with interference is ignored.

In our own previous work, the dependencies between audio

events were used to enhance the robustness of audio event de-

tection [5], and later, the problem of acoustic mismatch in de-

tecting umpire calls was considered [7]. This work develops

and combines aspects of these two papers.

In the modern tennis game, players are increasingly likely

to vocalize when they strike the ball—colloquially known as a

“grunt”. This is unfortunate for the key task of detecting ball

hits, because the grunt can mask the hit sound, although more

often, they are separate events. Here, we make a virtue out of

necessity, and rather than regarding the players’ grunts as in-

terfering noise, we use them as contextual information during

rallies. In fact, if they occur, they are near perfect indicators

of the nearby occurrence of a ball hit. Some players grunt ev-

ery time the hit the ball, others less frequently or not at all, but

every single match we have processed contains grunts. Hence

in this work, we use only ball-hits that are indicated by grunts,

and we find that this give us sufficient training-data to build a

reliable model of ball-hits.

However, there are other vocalisations on the soundtrack,

which are the umpire’s speech, the line judge’s shouts and the

commentary. We show in this paper how these are discrimi-

nated from grunts and thus from ball-hits. Our approach is in

four steps:

1. Location of possible players’ grunts or line judge calls

by pitch information;

2. Location of candidate ball hit locations using the above

information;

3. Initialisation and refinement of the acoustic model of

the sound class of the ball hit;

4. Discrimination of players’ grunts from other vocalisa-

tions.

2. DATA

In this paper, we use soundtrack data from a total of five ten-

nis matches, one for training and the other four for test. Table
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1 gives basic information about these matches. The training

Game Type Dur. # ball # line
(mins.) hit judge call

Train. Wim-08 singles 180 1528 128

Test (1) AUS-09 singles 136 1259 92

Test (2) US-06 doubles 48 510 76

Test (3) AUS-09 doubles 98 796 79

Test (4) Wim-09 singles 131 838 89

Table 1: Data for training and test

data is extracted from a men’s single match of the Wimbledon

Open (2008), while the test matches are from the Australian

Open (Test 1 and 3), the US Open (Test 2), and the Wimble-

don Open (Test 4). The soundtracks of the five matches are

segmented into 30 ms frames using a sliding window with a

20-ms overlap. Each audio frame is converted into a vector of

39-D MFCCs (13 static components, plus velocity and accel-

eration). As in our previous work [2], we define seven classes

of audio events, each of them being modelled with a Gaussian

mixture model (GMM) built from frames labelled as belong-

ing to that audio class. These are: Chair umpire’s speech,

Line judge’s shout, Sound of ball hit, Crowd noise, Elec-

tronic beep, Commentators’ speech and Silence. The num-

ber of mixture components in the GMMs ranges from three

to seven.

3. EVENT DETECTION

3.1. Location of players’ grunts

As we have indicated in the Introduction, the ball-hit model

is much affected by acoustic mismatch and interfering noise.

Hence in this work, we replace the GMM of the ball-hit model

formed from the training data with a new model, trained in an

unsupervised fashion from the test data, that relies on grunt

detection to locate the position of a ball-hit.

For detection of players’ grunts, we do not build a specific

model because the acoustic characteristics of these vocalisa-

tions vary hugely depending on the player, the location of the

tournament, the microphone positions etc. Instead, we locate

them using pitch information. To extract pitch information

from a segment of audio, we compute the “subharmonic-to-

harmonic ratio”: a detailed description of this technique can

be found in [4]. Figure 1 shows the distribution of the fun-

damental frequency (F0) from different speakers in a tennis

match over the training data. For the time being, we regard

line judges’ shouts and players’ grunts as being in the same

class. The figure shows that “proper” speech (even the few

words spoken by the umpire) has a very different F0 distri-

bution from the short vocalisations produced by the players

and the line judges. The pitches of commentators’ and chair

umpire’s speech lie mainly within the range of 100-200 Hz,

while much of the pitch extracted from players’ grunts and
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Fig. 1: Normalised distributions of F0 of the voices from dif-

ferent speakers, including commentators, chair umpire, line

judges and players.

line judge calls is higher than 250 Hz. This difference en-

ables us to coarsely locate the position of grunts/calls in the

sound track.

3.2. Finding candidate ball-hit locations

The construction of a GMM for the sound of ball hit from the

soundtrack of a previously unheard match relies on the detec-

tion of the locations of players’ grunts. Figure 2 illustrates

Fig. 2: An illustration of how we approximately locate the

sound of ball hits using pitch information extracted from the

players’ grunts. The upper part of this figure shows the pitch

information (F0) of the audio signals plotted at the bottom.

X-axis indicates timing information, and y-axes represent fre-

quency for F0 and amplitude for audio signals, respectively.

how we locate possible ball-hit locations (Step 2). The upper

part of the figure shows the estimated F0 contour of the sig-

nal, and we see that at the end of the signal, there is a section

which is above 300 Hz for about 200 ms, which may indicate

a grunt/line-judge shout event. A 1.5s window before this

point indicates the region in which a ball-hit is likely to be

present: 1.5s of signal before the grunt is used because analy-

sis of the soundtrack revelas that ball-hits almost always occur

before grunts, and that the timing gap τ between any two ad-

jacent ball hits lies in the interval 0.5 < τ < 1.5 [6]. We then

locate the frame whose sound intensity is the largest within

this window, and we assume that this frame is the beginning

of the ball-hit. The following 100ms of signal is labelled as
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“ball-hit”. The figure of 100 ms is derived from work done in

[2], which analysed the duration distribution of the ball hits.

The accuracy of ball-hit candidate selection on our test games

is actually 73.68%, which is sufficient to build a better model

of the ball-hit class than that obtained from the training game.

3.3. Model refinement and confidence measure

The GMMs of all the audio event classes except the ball-hit

class are used for recognition of test material. The ball-hit

class is rebuilt for each new test data set using the procedure

described above to identify ball-hit events. However, because

this procedure is subject to error, it is necessary to exclude

ball-hit segments that we have low confidence in. We define

a confidence measure for any frame whose highest likelihood

is produced by the class “ball-hit” as follows:

CM(fi) = LLmax(fi|CB)− LLmax2(fi|Ck) (1)

where LLmax is the highest log likelihood from class CB =

“ball-hit”, and LLmax2 the next highest likelihood from a dif-

ferent class Ck. Any frames whose value of CM(fi) is above

some threshold will be used for training a new ball-hit GMM:

frames whose value of CM(fi) is below threshold are dis-

carded. The threshold is a parameter that is varied in our ex-

periments.

3.4. Detection of Line Judge’s Shout

To distinguish the line judge’s shouts from the players’ grunts,

we take into account both their differences in acoustic charac-

teristics and occurrence positions in a match. Players’ grunts

occur almost exclusively between two adjacent ball hits, and

the timing interval (Tinterval) between two “grunt” events is

much shorter than the time between a grunt/line-judge shout

event and the next line judge shout, since line judge shout

events events occur only at the end of a game point or after a

serve. Using an appropriate timing interval threshold enables

us to distinguish grunts from line judges’ shouts.

4. EXPERIMENTAL SET-UP

In our experiments, we compare the detection performances

of the sound of ball hits with and without using players’

grunts. The model without using players’ grunts uses the

ball-hit GMM built from the labelled training-data. Because

this can be applied to any test match, we call this the “match-

independent” model (MIM). The model that makes use of

players’ grunts is specific to a given test match, and hence we

term this a “match-dependent” model (MDM). In addition,

we test the effect of the CM threshold on ball hit detection

performance.

To evaluate the detection performance for the event “ball

hit” or the event “line judge shouts”, the F-score is used, de-

fined below as:

P =
# correctly detected events

# detected events
(2)

R =
# correctly detected events

# audio events in ground truth
(3)

F =
2PR

P +R
.

In equation 3, an “event” is either a ball-hit or a line-judge

shout. An event is considered to be correctly detected when

the maximum likelihood value of the detected event is located

within the manually annotated range of an event with the same

label. Detected events that are not within an audio event that

has the same label are regarded as false positives, and unde-

tected events are false negatives.

5. RESULTS AND ANALYSIS

Table 2 shows the detection performance for the sound of ball

hits in different matches using the match-independent (MIM)

and match-dependent model (MDM), respectively. The CM

value was manually selected to give the highest obtainable

F-score, and is also shown. Using the MIM model, the acous-

Type Train. Test 1 2 3 4
MIM 85.3 31.07 51.57 16.99 73.01

CM-thresh 10 1 6 1 4

MDM 85.3 79.47 76.36 76.70 81.41

CM-thresh 10 15 18 18 11

Improv. 0 +156% +48% +351% +11%

Table 2: Ball-hit detection performance (F-score) using the

MIM and MDM with manually selected CM threshold

tic mismatch between the training and the test data severely

impacts detection performance on the four test matches, es-

pecially on Tests 1 and 3. Using the MDM significantly out-

performs the MIM on Tests 1, 2 and 3, although there is a

relative smaller improvement (11%) on Test 4. This is almost

certainly because Test 4 and the training match are from the

same tournament, the Wimbledon Open, so the acoustic mis-

match is not too great. Table 2 also shows that the optimum

CM thresholds vary considerably from match to match.

Figures 3- 6 plot the variation of the F-score with the con-

fidence measures used in the MIM (blue) and MDM (red)

models. Also plotted (green) is the performance obtained

when the CM threshold is set CMmean, defined as:

CMmean =
1

N

N∑

i=1

CM(fi) (4)

These figures confirm that the choice of CM value has a

huge effect on detection performance. However, it is very

encouraging that by using CMmean as the threshold, the

performance in most cases is near optimum for the proposed
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(MDM) technique. This means that a threshold can be au-

tomatically set for determining which signal segments are to

be used in building the ball-hit GMM without compromising

performance.
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Fig. 3: Detection performances of ball hit on Test 1
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Fig. 4: Detection performances ball hit on Test 2

Table 3 shows the detection performance for line judges’

shouts. The improvement is less dramatic than for ball-hit

detection, but is still useful. However, correct detection of

ball-hits is more important to us in this task than detection of

line-judges’ shouts.

Type Training Test 1 2 3 4
MIM 42.99 38.10 40.76 36.79 42.71

MDM 42.99 43.49 44.71 44.31 47.19

Improv. 0 +14.3 +9.7 +20.7 +10.5

Table 3: Detection performance (F-score(%)) of the line

judges’ shouts using the timing intervals after employing the

MDM to improve ball hit detection

6. CONCLUSION AND FUTURE WORK

In this paper, we regarded players’ grunts not as interfering

noise, but rather as useful contextual information to aid us

in locating ball-hit positions. We made use of pitch infor-

mation to identify grunts and line judges’ shouts, which are

acoustically similar, and then used high-level information (in-

ter ball-hit timing) to separate these two audio events. We

showed how to use an unsupervised learning method to se-

lects segments of signal to train improved models of ball-hits,

and that a confidence measure could be successfully automat-

ically determined for this selection, which is very important

for portability to different matches.
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Fig. 5: Detection performances ball hit on Test 3
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Fig. 6: Detection performances ball hit on Test 4

Our future work will firstly be to improve our ability

to identify more types of audio signals in different environ-

ments. We will also begin to incorporate and integrate in-

formation derived from computer vision techniques to build

more accurate high-level game structures for understanding

human actions by learning the multimodal information in

games.
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