
SPEAKER INDEPENDENT DISCRIMINANT FEATURE EXTRACTION FOR ACOUSTIC
PATTERN-MATCHING

Xavier Anguera

Telefonica Research
Torre Telefonica-Diagonal 00

08019 Barcelona, Spain
xanguera@tid.es

ABSTRACT
Acoustic pattern-matching algorithms have recently become

prominent again for automatically processing speech utterances
where no prior knowledge of the spoken language is required. Ap-
plications of such technology include, but are not limited to, query-
by-example search, spoken term detection and automatic word
discovery. Obtaining content-aware acoustic features as indepen-
dent as possible from speaker and acoustic environment variations is
a key step in these algorithms. Currently, GMM posteriorgrams are
found to outperform the standard MFCC features even though they
were not designed to optimize the discrimination between acoustic
classes. In this paper we combine the K-means clustering algorothm
with the GMM posteriorgrams front-end to obtain more discrim-
inant features. Results on a query-by-example task show that the
proposed approaches outperform standard MFCC features by 7.8%
absolute P@N and GMM-based posteriorgram features by 3.7%
absolute P@N when using a 64-dimensional feature vector.

Index Terms— Pattern-matching, word discovery, query-by-
example, k-means

1. INTRODUCTION

Acoustic pattern-matching algorithms were very prominently used
in speech processing in the 70’s and 80’s (see for example [1]) up un-
til HMM-based approaches became more fashionable for being less
computationally demanding and obtaining better results. This was
made apparent in speech recognition where compact acoustic mod-
els could be trained instead of performing a comparison with multi-
ple individual patterns. As time has passed, in order to train acoustic
models with growing complexity, the need for manually transcribed
and aligned corpora has increased, making development of systems
for low-resourced languages more difficult (i.e. languages for which
no –or limited– amounts of transcribed audio is available).

Recently we started seeing a reappearance of pattern-matching
based applications since they require little (or none) a priori knowl-
edge on the language being processed. Such characteristic is very
important when dealing with such low-resource languages, or with
particular acoustic conditions for which there is no available data for
training or adapting the acoustic models. Furthermore, these algo-
rithms have also benefited from the exponential increase of machine
processing power and the proposal of several algorithms for fast
matching and for improved search of matching patterns in speech
[2, 3, 4, 5].

Regardless of the application, the acoustic front-end used to
obtain acoustic features is of big importance for pattern-matching.
Such features should represent the content in the audio while being

independent of the speaker, the acoustic conditions or the device
used for recording. Although traditionally standard speech recog-
nition features (e.g. MFCC) have been used for this task [2], the
introduction of posteriorgram vectors [6, 4, 7] has been an important
step forward. Given a standard input feature vector, posteriorgram
features are obtained either from the phoneme posterior probabil-
ities of a phonetic recognizer [6] or from the posterior probability
of each Gaussian in a Gaussian Mixture Model (GMM), trained on
similar data regarding the task at hand [7]. Unfortunately, phoneme
posteriors have been found to underperform when the language they
have been trained on differs from that for which they are used [4].
In addition, as explained below, we do not consider the GMM mod-
els, trained using Maximum-Likelihood Expectation-Maximization
(EM-ML) to be optimal either, as they do not emphasize the dis-
criminant information between acoustic classes in the training data.

To address this problem, in this paper we use the well-known
K-means clustering algorithm to obtain more discriminant feature
vectors. We take advantage of the fact that in the K-means algo-
rithm frames are hard-assigned to their closest cluster in order to
define clearly bounded clusters. We then use the data assigned to
each cluster to train Gaussian mixtures, thus obtaining a final model
where Gaussians are in much less overlap than those obtained from
EM-ML training. In this paper we propose three possible implemen-
tations of this technique. In the first one, we use the Hierarchical K-
means algorithm to obtain discriminant clusters defined according
to frame density. A second algorithm adapts the well used GMM-
posteriorgram model by performing final K-means iteration at the
end, which reduces the overlap between Gaussians. Finally, a third
algorithm can be implemented as a post-processing to either of the
previous two algorithms and performs a binarization of the feature
vectors. By doing this we obtain big saving in terms of storage space,
although with some performance penalty. All three front-ends have
been tested in a query-by-example task on French broadcast news
data and obtain interesting improvements over using MFCC param-
eters and standard GMM models.

2. SPEAKER INDEPENDENT FEATURE EXTRACTION

The algorithms proposed for feature extraction of speaker indepen-
dent features are built upon the GMM-posteriorgram approach ini-
tially applied in pattern-matching in [7]. For a given input feature
vector, usually represented as a multidimensional MFCC vector, we
can consider the GMM model as performing a change of basis of
such data into a different representation, usually higher-dimensional,
where the speaker variability is reduced in favor of content discrim-
inancy. Alternatively, we can consider the GMM model as a way

485978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

to subdivide the multidimensional acoustic space into a finite num-
ber of regions, whose distance to every acoustic frame is then used
as its representation. In fact, phoneme posteriorgrams are based on
the same principle, except that in that case some prior knowledge
of a particular language is used in order to define the regions in the
acoustic space in which acoustic frames for each phoneme are to be
found.

Considering that no transcription is available (therefore we can
not train phonetic models with it) we need to automatically divide the
acoustic space into acoustically-homogeneous regions. The optimal
segmentation of the space should comply with the following two
properties. On the one hand, it should be able to cluster the space
according to the density of feature points, i.e. more acoustic regions
should be defined in areas with higher density of acoustic data, where
the distance between acoustically dissimilar regions. Such behavior
is important in order to obtain feature vectors where the entropy in
each of the dimensions is minimized (i.e. the variance of their values
is maximized). On the other hand, the resulting regions should be
well bounded and clearly separate acoustically dissimilar regions in
order to obtain feature vectors where only one or a few dimensions
obtain high values given every input feature.

2.1. EM-ML training versus Hierarchical K-means training
The standard GMM-posteriorgrams approach trains a GMM model
via Maximum-Likelihood Expectation-Maximization (EM-ML) us-
ing acoustically similar development data. EM-ML training obtains
models that fit the given training data by emphasizing the most (e.g.
more Gaussian centers) areas with a denser number of feature vec-
tors. Although the EM training approach is able to maximize the
likelihood of the data given the model, it tends to generate Gaus-
sian mixtures with high overlap, thus not creating a clear bound-
ary between acoustically dissimilar regions. In addition, after train-
ing some of the Gaussians end up with a very small variance as
they focus on modeling particular acoustic events. This can cause
the posterior probabilities obtained from the Gaussian mixtures to
be highly unstable given small data fluctuations like those resulting
from speaker variability in producing acoustic sounds.

Alternatively, the K-means algorithm is able to minimize the
quadratic mean error by assigning each acoustic frame to the cluster
with closest mean according to some defined metric (we use the eu-
clidean distance in this work). By doing so it obtains clearly bounded
clusters, which are less prone to error when assigning a given input
feature vector to the closest cluster. The k-means algorithm does not
find by itself the initial cluster centers, therefore it does not adapt
to the density of points in the acoustic space. Fortunately, in acous-
tic modeling, the K-means algorithm is usually applied in conjunc-
tion with a hierarchical approach in order to initialize the Gaussian
means in GMM models before the EM-ML algorithm is applied. Hi-
erarchical K-means clustering performs an iterative splitting of the
data from 1 to the requested number of final clusters. In our imple-
mentation the split is done by slightly displacing each cluster center
according to the variance in each dimension. In every step of the
iteration we perform K-means until convergence. The result of the
algorithm is a set of clearly bounded clusters whose centers are de-
fined taking into account the input data, thus placing more clusters
where data is denser.

To illustrate the difference between the result of EMML training
and Hierarchical K-means clustering, Figure 1 shows a visualization
of the result of modeling a set of 2-dimensional feature vectors by
using an EM-ML algorithm and hierarchical K-means. While the
EM-ML algorithm positions many Gaussians on top of each other to
optimize the likelihood of the model given the data, the Hierarchical

(a) (b)

Fig. 1. Illustrative modeling of the acoustic space using a) EM-ML
training and Gaussian mixtures, and b) K-means algorithm.

K-means algorithm clearly defines the regions in space where each
cluster is placed, which accounts for much better defined regions
from which we expect to obtain more discriminant feature vectors.

2.2. Algorithms proposed
In this section we present three approaches that take advantage of
the power offered by K-means clustering, either applying it by itself
or in combination with the standard GMM-posteriorgrams method
in order to improve its results.

2.2.1. Hierarchical K-means features

Given that the hierarchical K-means by itself follows both desired
characteristics of a good acoustic feature for pattern-matching ap-
plications we decided to obtain the desired feature vectors directly
from the resulting clusters. To do so, we gather all frames assigned
to each cluster in the final iteration and train a single Gaussian with
them. A final GMM-like model is created by pooling all these Gaus-
sians together and estimating their weights using the percentage of
frames assigned to each cluster. Note that not a single EM-ML iter-
ation is executed, which makes the system much faster to train than
a standard GMM model.

2.2.2. Discriminant-GMM features

Discriminant-GMM modeling (DGMM) is composed of an initial
standard EM-ML training to obtain a GMM model followed by a K-
means training. In order to obtain the initial Gaussians for the GMM
we have experimented with two possible methods: hierarchical K-
means (as explained above) and Gaussian Splitting, which applies
the same iterative approach as hierarchical K-means, but reassigs
the frames using expectation maximization (EM) steps.

Once the GMM is obtained we apply K-means training to make
features more discriminant. The initial K-means clusters are initial-
ized using the Gaussian means. Next we assign each frame in the
training data to its closest cluster (using euclidean distance) and we
recompute the cluster means. As an alternative to this implemen-
tation (which considers isotropic clusters), we have also tested the
possibility of performing a hard assignment of frames to the clos-
est Gaussian according to their likelihood, and then recomputing all
Gaussian statistics using only the data assigned to each Gaussian.
In both cases we iterate the assignment-update stages until less that
1% of frames change cluster between any two consecutive iterations.
Once the process converges, we obtain our DGMM by training the
Gaussians only with the assigned frames like in the previous algo-
rithm.

Given that this method builds upon standard GMM training, it
is therefore useful both to train new models and to adapt existing

486

GMM models with additional data.

2.2.3. BinaryGrams features

A disadvantage of any posteriorgram-based technique is that its di-
mensionality is usually bigger than that of the original acoustic fea-
tures (e.g. MFCC) obtained from the data. In order to solve this we
rely on techniques derived from research on speaker ID [8] to obtain
binary features from the data. In particular, given a feature vector
obtained from any of the previous two models, we set to 1 the α%
of values with highest posterior probability, and to 0 the rest. By
selecting the Gaussians closest to a given input feature vector we are
indicating which regions in space it is closest to. In practical terms,
given that each dimension of the resulting feature vector is now rep-
resented by a single bit, we are reducing the storage requirements
by sizeof(float) (which depends on the computer architecture being
used). In our implementation we use α = 10%.

3. QUERY-BY-EXAMPLE SYSTEM

Query-by-example search is a possible application for the features
proposed. Given an audio query composed of one or multiple spoken
words, we strive at finding the location(s) where it is spoken within
some reference database. Speech recognition-based systems either
transcribe the reference and query or obtain their phoneme latices in
order to compare their values in search for matches. As discussed
earlier, these methods require a priori knowledge of the language
we want to process and transcribed and aligned data for training.
By using pattern-matching techniques we can compare directly the
signals at the acoustic level.

The pattern-matching approach we use is defined as follows.
Given two sequences, X = {x[1], . . . x[i], . . . , x[Nx]} and Y =
{y[1], . . . y[j], . . . , y[Ny]} of acoustically-derived features, respec-
tively obtained from the query and the reference, we compare them
using a DTW-like algorithm. The standard DTW algorithm returns
the optimum alignment between any two sequences by finding the
optimum path between their beginning (i, j) = (1, 1) and end
(i, j) = (Nx, Ny) points. In our case we constraint the query signal
to match between start and end, but we allow the reference signal
to start its alignment at any position (1, ·) and finish whenever the
dynamic programming algorithm reaches i = Nx. Although we do
not set any global constraints, the local constraints are set so that a
maximum 2-times or 1

2
-times warping is allowed by choosing the

path that minimizes the cost to reach position (i, j) as

cost(i, j) =

d(i, j) + min

⎧⎨
⎩

D(i− 2, j − 1))/(#(i− 2, j − 1) + 3)
D(i− 2, j − 2))/(#(i− 2, j − 2) + 4)
D(i− 1, j − 2))/(#(i− 1, j − 2) + 3)

(1)

Where D(i, j) is the accumulated (non-normalized) distance of all
optimum paths until position (i, j), d(i, j) is the local distance be-
tween frames xi and yj from both compared sequences, and #(i, j)
is the number of jumps of the optimum path until position (i, j).
Note than when normalizing the different possible paths we slightly
favor the diagonal match. The local distance d(i, j) is defined in Eq.
3 or 2 depending on whether the features are binary or real-valued,
respectively, where K is the dimension of the feature vectors.

d(i, j) = − log

(∑K
k=1(xk[i] ∧ yk[j])∑K
k=1(xk[i] ∨ yk[j])

)
(2)

Fig. 2. P@N, MAP and EER for the Hierarchical K-means approach
using different numbers of clusters

d(i, j) =
< x[i], y[j] >

||x[i]|| · ||y[j]|| (3)

4. EXPERIMENTAL SECTION

We tested the feature extraction proposed in a query-by-example task
by using a 4h subset of the ESTER corpus [9]. This corpus is the
same that is used in [10] and contains 4 different French broadcast
news shows, recorded on the same day, from different radio stations.
The recordings have been split into 2915 silence bounded segments
of varying length, with an average of 4.87 seconds each. Then, 20
keywords have been extracted. These appear between 13 and 284
times in the reference, the query keyword having been eliminated
from the test. Each keyword is spoken in average by 22.55 speakers.
The objective of this test is to correctly find the sequences in which
each of these queries appear, regardless of where they appear within
the segment.

4.1. Evaluation criteria
For each query-reference segment pair the system computes a dis-
tance by using either equation 2 or 3, depending on the features being
either real-valued or binary. For the case of MFCC features we apply
an offset to the term inside the log() in equation 2 in order to avoid
negative values inside the log(). Once all distances for a query have
been computed, P@10, MAP and EER performance metrics are ob-
tained. P@N indicates the percentage of correct matches that appear
ranked in the top N results, where N is the number of documents in
which the query appears in the reference database. MAP is the mean
average precision, i.e. the mean of precision scores after each key-
word occurrence has been retrieved. Finally, EER is the percentage
error where false acceptances and false rejections are equal. In all
cases except for the EER, the higher the percentage, the better. Such
performance metrics are obtained for each query independently and
then averaged over all queries.

4.2. Evaluation Results
The baseline acoustic features used throughout the experiments are
39-dimensional MFCC features (12 Cepstra + log energy + their
deltas and double deltas) as in [10].

First we perform an analysis of the correct dimensionality of
the feature vector (i.e. the number of Gaussians we need to obtain

487

from the training data). Figure 2 shows all three performance met-
rics computed for the Hierarchical K-means system computed for a
dimensionality between 2 and 256. The bigger the dimensionality,
the better the system performs. Therefore, the choice of the right
dimensionality will depend on the computation and feature storage
limitations. We observe that after 64 Gaussians results show a slower
increase. We therefore choose 64 as the dimension for our system.

Next, Table 1 compares the performance for all implementation
combinations we described in section 2. It first shows results for a
system using just the MFCC-39 features and the baseline GMM pos-
teriorgrams system results. Then we show the results obtained with
the three different systems proposed: using Hierarchical K-means
alone, using the discriminant-GMM approach and the binarization
of the previous two. We observe that MFCC-39 features are the
worse performing in general, which was expectable as such features
are rather speaker dependent. The baseline GMM posteriorgram ap-
proach obtains much improved performances than MFCC-39 both
when initializing the model using hierarchical K-means clustering
and Gaussian splitting (GSplit).

The Hierarchical K-means model was tested using two alterna-
tive implementations: one which trains the final Gaussians by as-
signing frames to the Gaussian whose likelihood is greater (indicated
as “Lkld dist”), another (tested for completeness) simply uses the eu-
clidean distance between a frame and each of the clusters as the fea-
ture vector. As expected, results using the posteriorgrams from the
derived Gaussians perform much better than simple euclidean fea-
tures and the baseline, probably as they take into account the Gaus-
sian weights and variances.

For the discriminant-GMM approach we show performances
for all combinations of K-means and Gaussian splitting initializa-
tion, and K-means and Likelihood-based frames reassignment post
EM-ML. In our experiments the optimum values for all metrics are
obtained when we do an initialization through Gaussian Splitting
and Likelihood-based reassignment. These represent an increase
in P@N of 3.7% and MAP of 1.3% absolute over the best GMM-
posteriorgram approach tested, as well as a reduction in EER of
1.1% absolute.

Finally, for all the systems proposed we show results when we
binarize the features turning the best α = 10% values in each frame
to 1. In general all results worsen and we get performances similar to
those of MFCC-39 features, although with much smaller footprints.
For example, for architechtures where a float occupies 32 bits, we
would spend 1248 bits to store an MFCC-39 feature, 2048 bits for
a GMM-based posteriorgram feature and only 64 bits for a binary-
gram.

5. CONCLUSIONS

Recent developments in acoustic pattern-matching allow the pro-
cessing of audio data without the need for large transcribed datasets,
standard in most HMM-based speech processing algorithms. A
very important step towards the success of these methods relies on
the front-end module, which needs to obtain features derived from
the audio data that are content-aware and independent of speaker
variability and changes in the acoustic conditions. In this paper
we proposed two improvements to the commonly used GMM-
posteriorgram front-end by combining it with the K-means algo-
rithm in order to increase its acoustic class discriminability while
maintaining its speaker independence. Experiments show that the
methods proposed improve over baseline techniques. In addition,
we also propose a binarized representation of the feature vectors,
useful where storage capacity are limited.

Table 1. Performance results

Description P@N MAP EER

MFCC-39 feats 41.6 % 45.2% 16.2 %

Standard GMM Posteriorgrams

K-means+EMML 41.4% 50.9% 12.3%
GSplit+EMML 45.7% 52.3% 12.2%

Hierarchical K-means

Lkld dist. 47.8% 45.4% 12%
Euclidean dist. 38% 40.9% 16.8%

Discriminant-GMM

K-means+EMML+K-means 47.3% 52.4% 11.8%
K-means+EMML+Lkld-based 46.3% 52.7% 12.1%

GSplit+EMML+K-means 46.5% 51.7% 11.8%
GSplit+EMML+Lkld 49.4% 53.6% 11.1%

BinaryGrams

K-means 41.6% 45.9% 15.7%
K-means+EMML+K-means 41.7% 45.8% 15.7%

K-means+EMML+Lkld 40.6% 43.5% 15.2%
GSplit+EMML+K-means 42.7% 46.1% 15.6%

GSplit+EMML+Lkld-based 41.3% 44.5% 15.3%

6. ACKNOWLEDGEMENTS

We would like to thank Guillaume Gravier at IRISA-Rennes for
sharing with us the databases and evaluation scripts we used in this
work.

7. REFERENCES

[1] C. S. Myers and L. R. Rabiner, “A level building dynamic
time warping algorithm for connected word recognition,” IEEE
ASSP, vol. 2, pp. 284–297, 1981.

[2] A. Park and J. Glass, “Unsupervised pattern discovery in
speech,” IEEE-TASLP, vol. 16, pp. 187–197, 2008.

[3] X. Anguera, R. Macrae, and N. Oliver, “Partial sequence
matching using an unvounded dynamic time warping algo-
rithm,” in PRoc. ICASSP, 2010.

[4] A. Muscariello, G. Gravier, and F. Bimbot, “Audio keyword
extraction by unsupervised word discovery,” in Proc. Inter-
speech, 2009.

[5] A. Jansen, K. Church, and H. Hermansky, “Towards spoken
term discovery at scale with zero resources,” in Proc. Inter-
speech, 2010.

[6] G. Aradilla, J. Vepa, and H. Bourlard, “Using posterior-based
features in template matching for speech recognition,” in Proc.
ICSLP, 2006.

[7] Y. Zhang and J. Glass, “Unsupervised spoken keyword spot-
ting via segmental dtw on gaussian posteriorgrams,” in Proc.
ASRU, Merano, Italy, December 2009, pp. 398–403.

[8] J-F Bonastre, X. Anguera, G. H. Sierra, and P-M Bousquet,
“Speaker modeling using local binary decisions,” in Proc. In-
terspeech, 2011.

[9] S. Galliano et al., “The ESTER evaluation campaign for the
rich transcription of French broadcast news,” in Proc. Inter-
speech, 2005.

[10] A. Muscariello, G. Gravier, and F. Bimbot, “Zero-resource
audio-only spoken term detection based on a combination of
template matching techniques,” in Proc. Interspeech, 2011.

488

