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ABSTRACT 

 
The segmental two-dimensional Mel-frequency cepstral coefficient 
(STDMFCC) feature has been successfully used in recent studies 
to detect objectionable sounds, which implicitly represent both 
static and dynamic characteristics of signal. This study now 
proposes a new normalized STDMFCC to improve the content 
recognition performance in diverse noisy environments. Two tests 
were conducted to verify the performance of the proposed feature: 
First, an objectionable sound recognition test was conducted with 
10-second clips to which white noises with diverse signal-to-noise 
ratios (SNRs) were added. The proposed feature in the test had an 
average error reduction rate (ERR) of 24.69% with respect to the 
STDMFCC. Second, a test was conducted based on the soundtrack 
that contained diverse channel environments and noises. The equal 
error rate (EER) of the proposed feature was 4.00% compared with 
10.33% of STDMFCC, and the ERR was 61.29%. 

Index Terms— Objectionable sound recognition, 
objectionable content detection, normalized STDMFCC, 
NSTDMFCC. 
 

1. INTRODUCTION 
 
With the development of Internet and multimedia technology, 
objectionable contents (especially pornographic contents) spread 
quickly, and they can be easily accessed by anybody. These 
contents can be harmful to young people, while causing social 
problems in some countries. Accordingly, studies have been 
conducted to automatically identify objectionable contents which 
were mostly based on the image-processing technology [1][2]. 
Recently, audio-based approach has been started as an alternative 
or a supplemental means to image-processing technology [3][4][5].  

As with other classification or recognition problems, it is very 
important to choose proper features when detecting objectionable 
contents. Objectionable sounds are clearly characterized by 
repeated moans, heavy breathing, and skin contact sounds. The use 
of features that represent such static and dynamic characteristics of 
objectionable sounds will be helpful in detecting objectionable 
contents. The representative short time static feature is the Mel-
frequency cepstral coefficients (MFCC) which are most 
successfully used in speech and speaker recognition area. 
Modulation data can be used as a dynamic feature for longer 
sections. In human speech perception, it is widely known that 16-
Hz or less modulation frequency plays an important role for the 
intelligibility of speech [6].  

Lim et al. suggested the two-dimensional Mel-frequency 
cepstral coefficients (TDMFCC) as features that represent short 

time MFCCs and their modulation information in matrix forms [7]. 
The TDMFCC matrix can be obtained by applying 2-D discrete 
cosine transform (DCT) to the successive logarithmic energies 
generated from Mel-scale bandpass filters. They used TDMFCC to 
classify bird species using bird sounds, and varied the analyzed 
segment lengths according to the syllable length of bird sounds. 
Kim et al. modified TDMFCC to detect objectionable sounds [4]. 
Because it is difficult to automatically detect the syllables under 
noisy environments, they proposed the segmental TDMFCC 
(STDMFCC), which is based on fixed-length of segments rather 
than on syllables. The results of tests showed that STDMFCC 
performs better than low-level features (short time energy, sub-
band energy, etc.), perceptual features (spectral flux, spectral 
flatness, etc.), and MFCC-based features (MFCC, MFCC with time 
derivatives) [4] [5]. 

The soundtracks, as multimedia contents, may have diverse 
channel characteristics. There are compensation techniques that are 
widely known and successfully introduced: cepstral mean 
subtraction (CMS) [8] and cepstral mean and variance 
normalization (CMVN) [9]. These techniques are robust against 
the channel distortion and noise. In CMS and CMVN, the 
normalization of mean or variance is helpful to alleviate the 
disaccord between probability density functions (PDFs) of MFCC 
parameters for training and test data. These methods were not 
applied to the content detection studies that used STDMFCC 
features [4][5][7]. 

This study examines how the application of CMS and CMVN 
influence STDMFCC features and proposes a new normalization 
method. The proposed new normalization method applies the 
traditional CMVN to the static parts of STDMFCC and normalizes 
the variance of the entire local segment for the dynamic part to 
maintain the relative magnitude information. Via two tests, the 
performance of the proposed normalized STDMFCC 
(NSTDMFCC) was compared with the conventional STDMFCC 
and the STDMFCCs to which CMS and CMVN are applied. First, 
the recognition performance deterioration of each feature was 
comparatively examined according to the changes in SNR via the 
clip-unit, white-noise-added objectionable sound recognition test. 
Second, the performances of the features were compared with one 
another via the detection test on the soundtrack that contains 
diverse channel environments and noises. Both tests use Gaussian 
mixture model (GMM) to model the objectionable and normal 
sounds. 

This paper is organized as follows. Section 2 describes the 
proposed NSTDMFCC. Section 3 describes the GMM for the 
sound modeling. Section 4 contains test and analysis results, and 
Section 5 provides the conclusions of this study. 
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Fig. 1. STDMFCC matrix calculation and final feature vector 
construction. 

2. NSTDMFCC 

The STDMFCC matrix can be obtained by applying 2-D DCT to 
the successive logarithmic energies generated from Mel-scale 
bandpass filters. Since 2-D DCT can be divided into two 1-D 
DCTs, STDMFCC matrix,  at the th frame is expressed as 
follows: 

 

 

(1) 

wherein  is the th MFCC coefficient,  is the modulation 
frequency index,  is the dimension of MFCC, and  is the 
segment length to calculate STDMFCC. The equation above is 
obtained by slightly modifying the original equation to explicitly 
express the frame index and dimension of MFCC. STDMFCC 
implicitly expresses the static and dynamic characteristics of the 
audio signals within the analyzed segment. Since important 
information for sound recognition are concentrated on the lower-
order coefficients, only the lower-order modulation coefficients are 
used as final feature vectors [4][5][7].  Figure 1 shows the 
aforementioned procedure.  

In this study, STDMFCC feature vectors were extracted as 
follows: 13 dimensional MFCCs (12 MFCC plus c0) are calculated 
using 25ms Hamming window and 10ms frame shift. STDMFCC 
matrix was obtained by applying 1-D DCT to L successive MFCCs. 
L was determined as 48, which coincides with approximately 
500ms. From the calculated matrix, eight lower-order modulation 
coefficients were selected per row to create the final feature vector. 
The resulting dimension of the feature vector was 104. Feature 
vectors were extracted from the segment for STDMFCC 
calculation at 250ms intervals. 

The soundtracks in the multimedia contents can have diverse 
channel characteristics according to the devices and channels that 
are used to create the contents. In addition, according to the genre 
of contents, conversations, pieces of background music, sound 
effects, and noises that exist in the contents can worsen the 
detection performance. Therefore, a proper compensation 
technique is required to detect objectionable contents regardless of 
channel characteristics and noises. CMS and CMVN are widely 
known compensation techniques, which are being successfully 
used. CMS normalize the first moment of MFCCs as follows: 

 (2) 
and CMVN normalizes the first and second moments of MFCCs to 
produce unit variance: 

 (3) 

wherein  is the mean of the th MFCC components and  
is the standard deviation obtained from the audio data.  

Fig. 2. Effects of CMS and CMVN on the dynamic information: (a) 
randomly generated 3 components and their DCT output, (b) CMS 
applied components and their DCT output, and (c) CMVN applied 
components and their DCT output. 
 

When we apply a DCT on a data, only 0th coefficient of DCT 
output is influenced by the DC component. Therefore, if 
STDMFCC is calculated using CMS-applied MFCCs, the 
normalization is applied only to the 0th modulation coefficients that 
express channel characteristic and not to dynamic coefficients. 
Therefore, the channel distortion compensation effect is still 
effective to STDMFCC. When CMVN is applied, however, it 
influences the dynamic coefficients of STDMFCC. The dynamic 
coefficients, which can be important queues for recognizing 
objectionable sounds, have different relative magnitude due to the 
cepstral variance normalization.  

Figure 2 illustrates the time trajectories of three randomly 
generated components (c1, c2 and c3), their DCT output (C1, C2 
and C3), and the results of applying CMS and CMVN. As shown 
in Figure 2(a) and 2(b), the application of CMS did not change the 
dynamic information in the DCT output, but the application of 
CMVN changed it (Figure 2(c)). Especially for the frequency 
indices 2 and 4, the relative magnitudes and orders of C2 and C3 
changed. 

Therefore, a new NSTDMFCC was proposed to overcome 
this problem. NSTDMFCC matrix  can be obtained as 
follows: 

 

 

(4) 

wherein   is the standard deviation of all MFCC coefficients in 
the segment which can be calculated as follows: 

 (5) 

 
and  is the segmental mean which can be calculated as follows: 

 (6) 
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The proposed NSTDMFCC applies the conventional CMVN to 
the 0th modulation coefficients. On the other hand, simple variance 
normalization is applied to the dynamic coefficients using a single 
value to maintain relative magnitude information. In this study, c0 
was excluded from the calculation of  and  to avoid bias 
because its dynamic range differed from those of other components, 
while it was included in normalization. 

 
3. GMM FOR SOUNDS MODELING 

 
GMMs have been successfully used in speaker recognition and 
sound classification fields. A GMM is a parametric probability 
function represented as a weighted sum of Gaussian mixture 
densities, as shown in the following equation. 

 (7) 

where  is feature vector;  is the weight for th mixture;  is the 
number of mixture components in model ; and  is the 
probability density function with mean vector  and covariance 
matrix .  

We made two GMM models: positive model ( ) for 
objectionable sounds and negative general model ( ) for non-
objectionable sounds. For classification, the test sounds are 
classified by length-normalized likelihood ratio as follows: 

Λ θ (8) 

where  is the observed feature vectors,  is the number of feature 
vectors and θ  is the decision threshold, which is empirically 
determined.  
 

4. EXPERIMENTAL RESULTS 
 
For the objectionable sound recognition test, the volume of the 
sound clip DB that was used in [4] and [5] was extended by about 
1.5 times. For objectionable sounds, 211 source soundtracks were 
collected from the Internet. The collected soundtracks include 
hidden camera, self-produced video, adult video, and adult 
broadcast. For training, 2,040 clips were extracted from 110 
soundtracks; for testing, 1,012 clips were extracted from 101 
soundtracks. Objectionable sound clips were collected so that a 
wide range of objectionable sound strength and performer’s gender 
could be evenly included. For non-objectionable sounds, 487 
source soundtracks were collected from user created contents 
(UCCs), TV programs, DVDs, music videos, audio, and music 
CDs. The genres of the collected soundtracks included culture and 
current events, children’s program, drama, entertainment, news, 
instrumental music, pop music, and sports. For training, 2,089 clips 
were extracted from the 247 soundtracks. For testing, 1,128 clips 
were extracted from the 240 soundtracks.  

All sound clips were 10s long, and were digitized in 16 bits 
per sample with 11 kHz sampling rate in a mono-channel. White 
noises were applied to the test DB at SNRs of 15 dB, 10 dB, and 5 
dB to compare the feature performances for different SNRs. The 
training of GMMs was performed using the training DB without 
white noises. 

Features were extracted in the manner described in Section 2. 
For GMMS, we evaluated the feature set with 128 mixtures of 
GMM for each sound class. In order to evaluate the effectiveness 

of proposed new feature, we evaluated the performance of 
conventional STDMFCC (TD), STDMFCC from CMS applied 
MFCCs (CMS.TD), and STDMFCC from CMVN applied MFCCs 
(CMVN.TD) and proposed NSTDMFCC (NTD). The performance 
was evaluated in terms of equal error rate (EER) where false 
positive rate and false negative rate are equal. Table 1 shows the 
performances of proposed NTD and other features. 

 
Table 1. Objectionable sound recognition performance of the 
proposed feature (NTD) and other features in the white noise 
environment for 128 Mixtures of GMM. 

Feature 
EER (%) for noise conditions 

Original 15dB 10dB 5dB 
TD 3.75 3.47 4.46 7.98 

CMS.TD 2.57 3.72 5.35 9.22 
CMVN.TD 3.56 4.81 5.75 6.89 

NTD 2.96 3.17 3.77 4.91 
 

First of all, all normalized features outperformed the 
conventional TD in the original condition which white noises are 
not added. CMS.TD had a good performance in the original 
environment, but its performance deteriorated with the decrease in 
SNR. This seems to have been caused by the decrease in SNR 
which affected the mean value for CMS. CMVN.TD had a worse 
performance than CMS.TD, but its performance decrease slope 
with respect to the noise level increase was gentler than that of 
CMS.TD. This seems to have been caused by the automatic gain 
control (AGC) effect according to the variance normalization of 
CMVN. 

NTD, which was proposed in this study, had a performance 
decrease of absolute 0.39% compared with CMS.TD in the original 
environment; it performed best in all the other environments. Its 
performance decrease was also most gentle with respect to the 
noise level increase. This seems to have been caused by efficiently 
addressing the channel distortion via CMVN in the static part of 
the feature. Moreover, in the dynamic part, each coefficient 
maintained it’s a relative magnitude via local segment variance 
normalization. NTD had an average EER of 3.70% compared with 
4.92% of the conventional TD, which made an error reduction rate 
(ERR) of 24.69%.  

This test is limited in that the actual noises in the multimedia 
contents can significantly differ from white noises, and that few 
actual contents have such strong and constant noises as those in 
this test. Therefore, the entire soundtrack that contained diverse 
channel environments and noises was used to detect objectionable 
contents, rather than proceeding to another artificial tests with 
other noises. 

To examine the performance of the proposed feature in real 
noise environment, a soundtrack DB for testing was established. 
For the non-objectionable class, a total of 600 soundtracks were 
collected (60 news, 60 documentaries, 49 music videos, 62 sports, 
60 entertainments, 192 dramas, and 117 movies). The total length 
was 546h. A total of 600 soundtracks were collected for 
objectionable class, with a total length of 577h. Objectionable 
soundtracks contained performers’ conversation, music, and others, 
as well as diverse noises. All the collected soundtracks were not 
the same as those in the DB for the preceding test, and they were 
digitalized in the same audio format. 

Special attention was given to the feature extraction. Most 
soundtracks may have long mute sections when they start and end. 
Mute sections can also exist when scenes change. These mute 
sections must be excluded before the calculation of normalization 
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coefficients or feature vector extraction. Because c0 of MFCC 
shows the characteristics similar to those of short time logarithmic 
energy, it was used for muted region detection. The MFCC vector 
that had a c0 value smaller than the threshold was excluded from 
the normalization coefficient calculation. The feature vector was 
also not extracted from the segment that contained such an MFCC 
vector. The features were extracted in three conditions with 
threshold 0 (no mute section excluded), 30, and 40. The training 
clip data that were used for the previous test was used for the 
GMM model training.  

 
Table 2. Objectionable soundtrack detection performance of NTD 
and other features for 128 mixtures of GMM. 

Feature 
EER (%) for c0 thresholds Min  

EER (%) 
ERR 
(%) 0 30 40 

TD 11.33  10.33  10.33  10.33  - 
CMS.TD 6.83  4.83  5.17  4.83  53.23  

CMVN.TD 10.33  7.33  7.00  7.00  32.26  
NTD 4.33  4.00  4.17  4.00  61.29  

 
Table 2 shows the performances of NTD and other features. 

The test results showed that the use of c0 threshold for excluding 
the mute section significantly influenced the performance. For 
CMS.TD and CMVN.TD, there was an absolute EER of 2% – 3% 
between threshold 0 and 30, which revealed that the exclusion of 
mute section is important in the soundtrack-based detection of 
objectionable content. The soundtrack-based performances of the 
features had a lower EER than the clip-based performance; 
however, it was similar to the order in the original environment.  

NTD outperformed other features in all cases, and were less 
affected by the mute section exclusion than other features. This 
seems to have been caused when NTD used the variance 
information in the local segment. NTD had an ERR of 61.29% 
with respect to the TD. 

It was not enough to compare the performances with a single 
value; the performance of each feature was examined with diverse 
thresholds. The c0 threshold that had the best EER was chosen by 
feature, and the receiver operating characteristic (ROC) curves 
were drawn in the Figure 3. The true positive rate of the y-axis 
must generally be 0 – 1 in the ROC curve, but as the performances 
of all features were good with an area under curve (AUC) of 0.95, 
only the range of 0.8 – 1 was represented for easy comparison. In 
the ROC curve, the proposed NTD had better performance than 
other features in almost all sections. 
 

5. CONCLUSION 
 
In this study, a new method was proposed to recognize the 
objectionable sounds in diverse noise environments by normalizing 
the conventional STDMFCC feature. The proposed NSTDMFCC 
allows the relative magnitude information of dynamic coefficients 
to be maintained by applying CMVN to the 0th modulation part and 
normalizing the variance of the entire local segment in the dynamic 
part. Using two tests, the performance of the proposed 
NSTDMFCC was compared with the conventional STDMFCC and 
the STDMFCCs to which CMS and CMVN were applied. First, an 
objectionable sound recognition test was conducted with sound 
clips to which white noises were added. The proposed feature in 
the test was more stable at diverse noise levels and had an average 
ERR of 24.69% with respect to the STDMFCC. In the soundtrack-
based detection test, the proposed feature had an ERR of 61.29% 

with respect to the conventional STDMFCC. Therefore, it seems 
that the proposed feature is more robust than STDMFCC against 
diverse noises and levels. 

 
Fig. 3. ROC curves for objectionable soundtrack detection. 
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