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ABSTRACT 
 

This paper presents the use of GPU for implementing a 
parallelized comparison method of linear scaling in a query 
by singing/humming system, which can compare a user's 
acoustic input to the database containing about 13,000 songs. 
We focus on the comparison from anywhere in a song, and 
the optimum setting is found through 3 different schemes of 
parallelization. With a speedup factor of 66, the proposed 
scheme with the optimum setting has been successfully 
implemented in a public QBSH system that is available 
from the internet. 
 

Index Terms— Music retrieval, Query-by-
singing/humming, linear scaling, GPU 
 

1. INTRODUCTION 
 

Query by singing/humming (QBSH) is an intuitive 
method for music retrieval. With a QBSH system, users are 
able to retrieve intended songs by singing or humming a 
portion of them. Ghias et al. published one of the early 
papers of query by humming, which used three different 
characters (‘U’, ‘D’, and ‘S’) to represent pitch contours [1]. 
McNab et al. enhanced the representation by considering 
rhythm information of segmented notes [2]. Jang et al. 
proposed the first QBSH system using linear scaling (LS) 
over frame-based pitch contours, which accommodates 
natural singing/humming for better performance [3]. An 
online demonstration system, which is called MIRACLE 
(Music Information Retrieval Acoustically with Clustered 
and paralleL Engine), was proposed by Jang et al. by using 
clustered computing [4]. 

With the availability of GPUs (Graphic Processing 
Units), a number of time-consuming recognition-related 
tasks have been speeded up such that commercial or real-
time applications become possible. In particular, Poli et al. 
applied dynamic time warping (DTW) on voice password 
identification system on GPUs, where four-digit passwords 
were used in their experiments [5]. Li et al. evaluated the 
probability of hidden Markov models on GPUs, where 
forward probability were calculated and summed up in 
parallel [6]. Sart et al. parallelized DTW on GPUs and 
FPGAs (Field Programmable Gate Arrays) to perform 

subsequence search of ECG (Electrocardiography) traces 
and star light curves [7]. They parallelize the search for a 
query in a time sequence. The procedure is repeated when 
there are many time sequences needed to be searched. 

A similar study of accelerating QBSH on GPUs is 
proposed by Ferrao et al. [8]. However, the comparison only 
started from the beginning of a song in the database, which 
may violate people’s singing habits. In this paper, 
comparison starts from anywhere in a song where notes 
begin, and the schemes of parallelization are directly 
designed for searching many sequences (i.e. many songs in 
the database). The proposed method is used to improve a 
web-deployed QBSH system called MIRACLE [9] which 
won the championship of 2011 CUDA programming contest 
in Taiwan, hosted by NVIDIA [10]. 

The remainder of this paper is organized as follows. 
Fundamentals of LS and GPUs are described in section 2 
and 3 respectively. Three different schemes of 
parallelization are introduced in section 4. Experimental 
results and analysis are shown in section 5. We conclude 
this paper and address directions for future work in section 6. 
 

2. LINEAR SCALING 
 
Linear scaling is a simple yet effective method for query by 
singing/humming [3]. Since the keys and tempos may be 
different between the input pitch vector and the songs in the 
database, we need to transpose the key and scale the tempo 
of the input vector. Key transposition can be simply handled 
by shifting the mean values of pitch vectors of query input 
and the intended songs in the database to the same value. 
Usually we shift one of them to match another when 
comparing these two vectors. For tempo scaling, since 
tempo variation is usually linear, we can apply linear scaling 
to the input pitch vector for comparison. Assuming that the 
input pitch vector has a duration of  seconds, then we need 
to compress or stretch the vector to obtain  versions of the 
original vector, with durations equally spaced between 

 and , where  (<1) and  (>1) are 
the minimum and maximum of the scaling factor, 
respectively. The distance between the input pitch vector 
and a particular song is then the minimum of the  distances 
between the  vectors and the song, as shown in figure 1 
where we compress/stretch the -second vector to obtain 5 
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vectors with lengths equally spaced between  and 
. The best result is obtained when the scaling factor 

is 1.25. 

 
Figure 1. An example of LS. 

 
3. GPUS' ARCHITECTURE AND PROGRAMMING 

 
A GPU consists of several streaming multiprocessors (SMs), 
each of which is composed of dozens of cores (streaming 
processors, SPs), on-chip shared memories, and registers. 
There are also constant memory, texture memory, and 
global memory shared by all of the SMs. Constant and 
texture memories can be accessed rapidly, but they are read-
only by the GPU. Global memory is much larger, and it can 
be written by the GPU. But the access time is usually 
several hundreds times longer than those of constant and 
texture memories. Figure 2 shows the basic architecture of 
the GPU. Arrows indicate the directions of data transfer. 

 
Figure 2. GPUs' architecture. 

 
CUDA (Compute Unified Device Architecture) is a 

parallel computing framework developed by NVIDIA for 
their recent GPUs. It can be viewed as an extension of C, 
which allows programmers to define C functions (called 
kernels) to be executed in parallel by different CUDA 
threads. Several threads are grouped in a block. Data in 
shared memory is shared by all threads within a block. In 
this study, NVIDIA GeForce GTX 560 Ti was used in our 
experiments, which contains 384 cores (48 cores per SM), 
that share a global memory of 1 GB with 256-bit interface 

width providing a throughput of 128 GB/sec. The number of 
threads within one block is limited up to 1024. 
 

4. PARALLEL IMPLEMENTATION 
 
At the time of system startup, we first expand the music 
notes in the database into pitch vectors (for frame-based 
comparison), and then move the whole database to global 
memory. For compressing/stretching the input pitch vector, 
we simply launch  threads for each different scaling factor. 
Then we move the scaled vectors back to the main memory, 
and then move them to GPUs' constant memory to speed up 
the access. Since our system allows frame-based comparison 
from any note, our memory access pattern is quite different 
from those in [7, 8] since each note may have different 
duration. Thus we turn to investigate different schemes for 
optimum parallelization, as shown next. 
 

 In the first scheme, we simply launch  threads for 
comparing   different songs in the database. The 
current song segment for comparison is copied to 
local storages for speeding up the computing. 
 

 In the second scheme, we launch  threads for one 
song. These  threads are grouped into a block, with 

 blocks in total. However, though the degree of 
parallelization is higher, the computation time is even 
longer. The reason is that there are many blocks but 
only a few of threads within one block – the SPs are 
not fully utilized. 
 

 In the third scheme, we still have  blocks for  
songs, but now each block has  threads in a block. 
The computation tasks starting at different notes in a 
song are equally distributed to the  threads. Since  
is usually larger than , the utilization of SPs is better 
than that of scheme 2. Moreover, since there are 
multiple threads for one song, we obtain the 
minimum distance between the input pitch vector and 
this song in parallel by using these threads.  

 
After obtaining the distance between the query input 

and each of the songs in the database, we then sort all the 
distances on CPU to obtain the top-n list. We did try the 
sorting using GPU, but the performance is not satisfactory 
due to excessive access time over the global memory. 
 

5. EXPERIMENTAL RESULTS AND ANALYSIS  
 

We used the public corpus MIR-QBSH [11] for our 
experiments of QBSH with GPU. Note that in this corpus, 
the anchor positions for all queries are from the beginning of 
a song. In order to test the accuracy of "anchor anywhere", 
we duplicate the last one fourth of each song and prepend it 
to the beginning of the song. The corpus contains 6197 clips 
which correspond to 48 children's songs. To increase the 
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complexity of the comparison, we added 12887 noise songs 
(which correspond to pop songs in the past decades) to the 
database, such that the number of songs in the database is 
12935. Figure 3 shows the distribution of song lengths, in 
terms of number of music notes and number of pitch points, 
respectively. This plot indicates the complexity of our task. 
The number of music notes indicates how many positions 
we need to start the comparison algorithm, while the number 
of pitch points represents how long the sequence we need to 
run through the comparison algorithm. 
 

 
Figure 3. Distribution of song lengths. The upper plot 
shows the distribution of note numbers in a song, while the 
lower plot shows the distribution of pitch vector lengths. 
 

In our experiment, the scaling factor was varied from 
0.6 to 1.5 to obtain 31 compressed or stretched versions of 
the original query input vector. Moreover, the frame size is 
256 points with no overlap; the sample rate is 8 KHz, 
leading to a pitch rate of 31.25/sec. The top-n recognition 
rate is shown in figure 4. 
 

 
Figure 4. Top-n recognition rate. 

 

Figure 5 and 6 show the computation time per query 
with respect to the number of songs in the database for the 
three different schemes of parallelization. In figure 5, 
numbers of threads in a block are 1024 for schemes 1 and 3, 
and 31 for scheme 2. In figure 6, numbers of threads in a 
block are 128 for schemes 1 and 3, and 31 for scheme 2. As 
shown in these figures, scheme 3 is the fastest, follow by 
schemes 1 and 2. More specific, scheme 3 is about 66 times 
faster than the original CPU version, which is running on a 
PC with and i7-2600 processor and 16 GB DDR-3 1600 
memories, demonstrating the effectiveness of the proposed 
method.  
 

 
Figure 5. The computation time per query with respect to 
the number of songs in the database for the three different 
schemes of parallelization. The number of threads in a block 
is 1024 for schemes 1 and 3, and 31 for scheme 2. 
 

 
Figure 6. The computation time per query with respect to 
the number of songs in the database for the three different 
schemes of parallelization. The number of threads in a block 
is 128 for schemes 1 and 3, and 31 for scheme 2. 
 

The above figures suggest that number of threads in a 
block is an important factor for scheme 3. Thus we 
investigated the effect of number of threads in a block for 
scheme 3, as shown in figure 7. The best performance is 
achieved when there are 128 threads in a block. Utilization 
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of cores in GPU will be lower if we launch fewer threads in 
a block. On the other hand, if we have more threads than 
128, then it becomes time consuming to compute the 
minimum distance for a song which is obtained from these 
threads. The snapshot of our system is shown in figure 8.  
 

 
Figure 7. Computation time versus number of threads in a 
block. 
 

 
Figure 8. A snapshot of our system. 

 
6. CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have proposed three parallelized schemes 
of LS on GPU for QBSH, where the comparison starts from 
anywhere in the songs. The speedup factor is about 66, and 
the response time has been reduced from 3 minutes to 3 
seconds, which is a critical factor when we are considering 
the usability of a web-deployed QBSH system available at 
[9]. 

Several directions for immediate future work are under 
way. Currently, linear scaling is employed in our system, 
which can deal with uniform scaling. For non-uniform 

scaling, we can apply DTW to achieve a higher degree of 
flexibility, which is the goal of our current focus. Moreover, 
due to efficiency of GPU-based computation, now it 
becomes possible to incorporate multiple recognizers for 
achieving a better accuracy, which is the second task of our 
future work. 
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