
ACCELERATING QUERY BY SINGING/HUMMING ON GPU: OPTIMIZATION FOR WEB
DEPLOYMENT

Chung-Che Wang, Chieh-Hsing Chen, Chin-Yang Kuo, Li-Ting Chiu and Jyh-Shing Roger Jang

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

{geniusturtle, chchen, jimmy, jesmallchiu, jang}@mirlab.org

ABSTRACT

This paper presents the use of GPU for implementing a
parallelized comparison method of linear scaling in a query
by singing/humming system, which can compare a user's
acoustic input to the database containing about 13,000 songs.
We focus on the comparison from anywhere in a song, and
the optimum setting is found through 3 different schemes of
parallelization. With a speedup factor of 66, the proposed
scheme with the optimum setting has been successfully
implemented in a public QBSH system that is available
from the internet.

Index Terms— Music retrieval, Query-by-
singing/humming, linear scaling, GPU

1. INTRODUCTION

Query by singing/humming (QBSH) is an intuitive
method for music retrieval. With a QBSH system, users are
able to retrieve intended songs by singing or humming a
portion of them. Ghias et al. published one of the early
papers of query by humming, which used three different
characters (‘U’, ‘D’, and ‘S’) to represent pitch contours [1].
McNab et al. enhanced the representation by considering
rhythm information of segmented notes [2]. Jang et al.
proposed the first QBSH system using linear scaling (LS)
over frame-based pitch contours, which accommodates
natural singing/humming for better performance [3]. An
online demonstration system, which is called MIRACLE
(Music Information Retrieval Acoustically with Clustered
and paralleL Engine), was proposed by Jang et al. by using
clustered computing [4].

With the availability of GPUs (Graphic Processing
Units), a number of time-consuming recognition-related
tasks have been speeded up such that commercial or real-
time applications become possible. In particular, Poli et al.
applied dynamic time warping (DTW) on voice password
identification system on GPUs, where four-digit passwords
were used in their experiments [5]. Li et al. evaluated the
probability of hidden Markov models on GPUs, where
forward probability were calculated and summed up in
parallel [6]. Sart et al. parallelized DTW on GPUs and
FPGAs (Field Programmable Gate Arrays) to perform

subsequence search of ECG (Electrocardiography) traces
and star light curves [7]. They parallelize the search for a
query in a time sequence. The procedure is repeated when
there are many time sequences needed to be searched.

A similar study of accelerating QBSH on GPUs is
proposed by Ferrao et al. [8]. However, the comparison only
started from the beginning of a song in the database, which
may violate people’s singing habits. In this paper,
comparison starts from anywhere in a song where notes
begin, and the schemes of parallelization are directly
designed for searching many sequences (i.e. many songs in
the database). The proposed method is used to improve a
web-deployed QBSH system called MIRACLE [9] which
won the championship of 2011 CUDA programming contest
in Taiwan, hosted by NVIDIA [10].

The remainder of this paper is organized as follows.
Fundamentals of LS and GPUs are described in section 2
and 3 respectively. Three different schemes of
parallelization are introduced in section 4. Experimental
results and analysis are shown in section 5. We conclude
this paper and address directions for future work in section 6.

2. LINEAR SCALING

Linear scaling is a simple yet effective method for query by
singing/humming [3]. Since the keys and tempos may be
different between the input pitch vector and the songs in the
database, we need to transpose the key and scale the tempo
of the input vector. Key transposition can be simply handled
by shifting the mean values of pitch vectors of query input
and the intended songs in the database to the same value.
Usually we shift one of them to match another when
comparing these two vectors. For tempo scaling, since
tempo variation is usually linear, we can apply linear scaling
to the input pitch vector for comparison. Assuming that the
input pitch vector has a duration of seconds, then we need
to compress or stretch the vector to obtain versions of the
original vector, with durations equally spaced between

 and , where (<1) and (>1) are
the minimum and maximum of the scaling factor,
respectively. The distance between the input pitch vector
and a particular song is then the minimum of the distances
between the vectors and the song, as shown in figure 1
where we compress/stretch the -second vector to obtain 5

477978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

vectors with lengths equally spaced between and
. The best result is obtained when the scaling factor

is 1.25.

Figure 1. An example of LS.

3. GPUS' ARCHITECTURE AND PROGRAMMING

A GPU consists of several streaming multiprocessors (SMs),
each of which is composed of dozens of cores (streaming
processors, SPs), on-chip shared memories, and registers.
There are also constant memory, texture memory, and
global memory shared by all of the SMs. Constant and
texture memories can be accessed rapidly, but they are read-
only by the GPU. Global memory is much larger, and it can
be written by the GPU. But the access time is usually
several hundreds times longer than those of constant and
texture memories. Figure 2 shows the basic architecture of
the GPU. Arrows indicate the directions of data transfer.

Figure 2. GPUs' architecture.

CUDA (Compute Unified Device Architecture) is a

parallel computing framework developed by NVIDIA for
their recent GPUs. It can be viewed as an extension of C,
which allows programmers to define C functions (called
kernels) to be executed in parallel by different CUDA
threads. Several threads are grouped in a block. Data in
shared memory is shared by all threads within a block. In
this study, NVIDIA GeForce GTX 560 Ti was used in our
experiments, which contains 384 cores (48 cores per SM),
that share a global memory of 1 GB with 256-bit interface

width providing a throughput of 128 GB/sec. The number of
threads within one block is limited up to 1024.

4. PARALLEL IMPLEMENTATION

At the time of system startup, we first expand the music
notes in the database into pitch vectors (for frame-based
comparison), and then move the whole database to global
memory. For compressing/stretching the input pitch vector,
we simply launch threads for each different scaling factor.
Then we move the scaled vectors back to the main memory,
and then move them to GPUs' constant memory to speed up
the access. Since our system allows frame-based comparison
from any note, our memory access pattern is quite different
from those in [7, 8] since each note may have different
duration. Thus we turn to investigate different schemes for
optimum parallelization, as shown next.

 In the first scheme, we simply launch threads for
comparing different songs in the database. The
current song segment for comparison is copied to
local storages for speeding up the computing.

 In the second scheme, we launch threads for one
song. These threads are grouped into a block, with

 blocks in total. However, though the degree of
parallelization is higher, the computation time is even
longer. The reason is that there are many blocks but
only a few of threads within one block – the SPs are
not fully utilized.

 In the third scheme, we still have blocks for
songs, but now each block has threads in a block.
The computation tasks starting at different notes in a
song are equally distributed to the threads. Since
is usually larger than , the utilization of SPs is better
than that of scheme 2. Moreover, since there are
multiple threads for one song, we obtain the
minimum distance between the input pitch vector and
this song in parallel by using these threads.

After obtaining the distance between the query input

and each of the songs in the database, we then sort all the
distances on CPU to obtain the top-n list. We did try the
sorting using GPU, but the performance is not satisfactory
due to excessive access time over the global memory.

5. EXPERIMENTAL RESULTS AND ANALYSIS

We used the public corpus MIR-QBSH [11] for our
experiments of QBSH with GPU. Note that in this corpus,
the anchor positions for all queries are from the beginning of
a song. In order to test the accuracy of "anchor anywhere",
we duplicate the last one fourth of each song and prepend it
to the beginning of the song. The corpus contains 6197 clips
which correspond to 48 children's songs. To increase the

478

complexity of the comparison, we added 12887 noise songs
(which correspond to pop songs in the past decades) to the
database, such that the number of songs in the database is
12935. Figure 3 shows the distribution of song lengths, in
terms of number of music notes and number of pitch points,
respectively. This plot indicates the complexity of our task.
The number of music notes indicates how many positions
we need to start the comparison algorithm, while the number
of pitch points represents how long the sequence we need to
run through the comparison algorithm.

Figure 3. Distribution of song lengths. The upper plot
shows the distribution of note numbers in a song, while the
lower plot shows the distribution of pitch vector lengths.

In our experiment, the scaling factor was varied from
0.6 to 1.5 to obtain 31 compressed or stretched versions of
the original query input vector. Moreover, the frame size is
256 points with no overlap; the sample rate is 8 KHz,
leading to a pitch rate of 31.25/sec. The top-n recognition
rate is shown in figure 4.

Figure 4. Top-n recognition rate.

Figure 5 and 6 show the computation time per query
with respect to the number of songs in the database for the
three different schemes of parallelization. In figure 5,
numbers of threads in a block are 1024 for schemes 1 and 3,
and 31 for scheme 2. In figure 6, numbers of threads in a
block are 128 for schemes 1 and 3, and 31 for scheme 2. As
shown in these figures, scheme 3 is the fastest, follow by
schemes 1 and 2. More specific, scheme 3 is about 66 times
faster than the original CPU version, which is running on a
PC with and i7-2600 processor and 16 GB DDR-3 1600
memories, demonstrating the effectiveness of the proposed
method.

Figure 5. The computation time per query with respect to
the number of songs in the database for the three different
schemes of parallelization. The number of threads in a block
is 1024 for schemes 1 and 3, and 31 for scheme 2.

Figure 6. The computation time per query with respect to
the number of songs in the database for the three different
schemes of parallelization. The number of threads in a block
is 128 for schemes 1 and 3, and 31 for scheme 2.

The above figures suggest that number of threads in a
block is an important factor for scheme 3. Thus we
investigated the effect of number of threads in a block for
scheme 3, as shown in figure 7. The best performance is
achieved when there are 128 threads in a block. Utilization

479

of cores in GPU will be lower if we launch fewer threads in
a block. On the other hand, if we have more threads than
128, then it becomes time consuming to compute the
minimum distance for a song which is obtained from these
threads. The snapshot of our system is shown in figure 8.

Figure 7. Computation time versus number of threads in a
block.

Figure 8. A snapshot of our system.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed three parallelized schemes
of LS on GPU for QBSH, where the comparison starts from
anywhere in the songs. The speedup factor is about 66, and
the response time has been reduced from 3 minutes to 3
seconds, which is a critical factor when we are considering
the usability of a web-deployed QBSH system available at
[9].

Several directions for immediate future work are under
way. Currently, linear scaling is employed in our system,
which can deal with uniform scaling. For non-uniform

scaling, we can apply DTW to achieve a higher degree of
flexibility, which is the goal of our current focus. Moreover,
due to efficiency of GPU-based computation, now it
becomes possible to incorporate multiple recognizers for
achieving a better accuracy, which is the second task of our
future work.

7. REFERENCES

[1] A. J. Ghias, D. C. Logan, and B. C. Smith, “Query by
humming-musical information retrieval in an audio database,” in
Proc. ACM Multimedia’95, San Francisco, pp. 216–221, 1995.

[2] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S.
J. Cunningham, “Toward the digital music library: Tune retrieval
from acoustic input,” in Proc. ACM Digital Libraries, pp. 11–18,
1996.

[3] J.-S. R. Jang, H.-R. Lee, and M.-Y. Kao, “Content-based Music
Retrieval Using Linear Scaling and Branch-and-Bound Tree
search,” in Proc. of IEEE International Conference on Multimedia
and Expo, August 2001.

[4] J.-S. R. Jang, J.-C. Chen, and M.-Y. Kao. “MIRACLE: A
Music Information Retrieval System with Clustered Computing
Engines,” in Proceedings of the 2nd International Conference on
Music Information Retrieval, ISMIR 2001, 2001.

[5] G. Poli, A. L. M. Levada, J. F. Mari, J. H. Satio, “Voice
Command Recognition with Dynamic Time Warping (DTW) using
Graphics Processing Units (GPU) with Compute Unified Device
Architecture (CUDA),” in Proceedings of the 19th International
Symposium on Computer Architecture and High Performance
Computing , SBAC-PAD 2007, Brazil, pp. 19–25, 2007.

 [6] Jun Li, Shuangping Chen, Yanhui Li, “The Fast Evaluation of
Hidden Markov Models on GPU,” in IEEE International
Conference on Intelligent Computing and Intelligent Systems,
Shanghai, vol. 4:426-430, Nov., 2009.

[7] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul,
“Accelerating Dynamic Time Warping Subsequence Search with
GPUs and FPGAs,” in ICDM '10 Proceedings of the 2010 IEEE
International Conference on Data Mining, pp. 1001-1006, 2010.

[8] P. Ferraro, P. Hanna, L. Imbert, and T. Izart, “Accelerating
Query-by-Humming on GPU,” in Proceedings of the 10th
International Conference on Music Information Retrieval, ISMIR
2009, pp. 279–284, 2009.

[9] Chung-Che Wang, Chieh-Hsing Chen, Chin-Yang Kuo, Li-
Ting Chiu and Jyh-Shing Roger Jang, “Welcome to Miracle!”
http://cuda.mirlab.org, 2011

[10] NVIDIA, “2011 CUDA programming contest in Taiwan,”
http://nvidia.ithome.com.tw/cuda/, 2011

[11] J.-S. R. Jang, "MIR-QBSH Corpus", MIR Lab, CS Dept,
Tsing Hua Univ, Taiwan. Available at the "MIR-QBSH Corpus"
link at http://mirlab.org/jang.

480

