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ABSTRACT

The general goal of cross-version music retrieval is to identify all
versions of a given piece of music by means of a short query au-
dio fragment. To speed up the retrieval process, hashing techniques
have been proposed, where the audio material is split up into small
overlapping shingles (used as hashes) that consist of short feature
subsequences. In this paper, we extend this work with the goal to
minimize the number of hash lookups. To this end, one requires
larger shingles that characterize the underlying piece of music to a
high degree, while being robust to variations that occur across dif-
ferent versions. As our main contribution, we report on extensive
experiments to highlight the delicate trade-off between the query
length, feature parameters, shingle dimension, and index settings.
These insights are of fundamental importance for building efficient
cross-version retrieval systems that scale to millions of songs.

Index Terms— Audio shingle, music retrieval, audio matching,
cover song identification, locality sensitive hashing

1. INTRODUCTION

In the last decade, content-based music retrieval based on audio fin-
gerprinting has become of commercial interest with various applica-
tions ranging from broadcast monitoring to automatic organization
of music collections [1]. Recent systems allow for identifying an au-
dio recording by means of a small query audio fragment even in the
presence of signal distortions and, employing efficient index struc-
tures, scale to millions of songs. Being based on a rather strict notion
of similarity close to identity, fingerprinting systems are designed to
basically detect exact duplicates of the queried audio fragment.

The requirements on retrieval systems change significantly when
considering cross-version retrieval tasks such as audio matching,
opus retrieval, or cover song identification [2, 3, 4, 5]. Here, given
an audio fragment as query, the general goal is to automatically re-
trieve from a given collection all documents that contain fragments
musically similar to the query. Such documents may include various
interpretations, arrangements and cover songs of the piece underly-
ing the query fragment. For such cross-version scenarios, one needs
retrieval systems that can handle variations with regard to musical
properties such as tempo, articulation, timbre or instrumentation.
Dealing with a much lower specificity level as in the fingerprinting
scenario, the development of efficient cross-version retrieval systems
that scale to huge data collections still faces challenging problems.

In this paper, we address the fundamental issue on how cross-
version retrieval can be accelerated by employing index struc-
tures that are based on suitably designed elementary building

The authors are supported by the Cluster of Excellence on Multimodal
Computing and Interaction at Saarland University.

blocks. Building upon ideas of two recently proposed retrieval
systems [2, 4], we first summarize these approaches and then de-
scribe our contributions.

In [4], a matching procedure is described that allows for a
fragment-based retrieval of all audio excerpts musically related to a
given query audio fragment. To this end, the query and all database
documents are converted to sequences of chroma-based audio fea-
tures that correlate to harmonic properties. To cope with temporal
variations, global scaling techniques are employed to derive multiple
queries that simulate different tempi. Finally, feature quantization
techniques in combination with inverted file indexing is applied
to speed up the retrieval process. The authors report on speed-up
factors of 10-20 for medium sized data collections. However, us-
ing a codebook of fixed size, this approach does not scale well to
collections of millions of songs.

In [2], a different approach is described. Instead of considering
long feature sequences, the audio material is split up into small over-
lapping shingles that consist of short chroma feature subsequences.
These shingles are indexed using locality sensitive hashing. While
being very efficient (the authors report on a speed-up factor of 100)
and scalable to even large data collections, the proposed shingling
approach has one major drawback. To cope with temporal varia-
tions, each shingle covers only a small portion of the audio mate-
rial (three seconds in the proposed system). As a result, an individ-
ual shingle is too short to characterize well a given piece of music.
Therefore, to obtain a meaningful retrieval result, one needs to com-
bine the information retrieved for a large number of query shingles.
As a consequence, many hash-table lookups are required in the re-
trieval process. This becomes particularly problematic, when the
index structure is stored on a secondary storage device.

Based on ideas of these two approaches, we systematically in-
vestigate in this paper how one can significantly reduce the number
of hash-table lookups. The main idea is to use a shingling approach,
where an individual shingle covers a relatively large portion of the
audio material (between 10 and 30 seconds). Compared to short
shingles, such large shingles have a higher musical relevance so that
a much lower number of shingles suffices to characterize a given
piece of music. However, increasing the size of a shingle comes at
the cost of increasing the dimensionality and possibly loosing ro-
bustness to variations. Building on well-known existing techniques,
the main contribution of this paper is to systematically investigate
the delicate trade-off between the query length, feature parameters,
shingle dimension, and index settings. In particular, we experimen-
tally determine a setting that allows for retrieving most versions of
a piece of music when using only a single 120-dimensional shingle
covering roughly 20 seconds of the audio material. Furthermore,
we show that such large shingles can still be indexed using locality
sensitive hashing with only a small degradation in retrieval quality.

The remainder of this paper is organized as follows. In Sec-
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tion 2, we introduce the overall retrieval approach. Then, in Sec-
tion 3, we report on our systematic experiments. Conclusions and
prospects on future work are given in Section 4. Further related work
is discussed in the respective sections

2. BASIC RETRIEVAL STRATEGY

In our cross-version retrieval scenario, given a short fragment of a
music recording as query, the goal is to retrieve all music recordings
(documents) that contain a passage similar to the query from a large
dataset. The retrieval result for a query is given as a ranked list of
document identifiers.

To this end, we proceed in three steps. Given a query Q and a
document D to be compared, the first step consists in converting Q
and D into sequences of feature vectors X = (X(1), . . . , X(M))
and Y = (Y (1), . . . , Y (N)), respectively. In our system, as in [4,
2], we use 12-dimensional chroma-based audio features, which are a
powerful mid-level representation for capturing harmonic content in
music recordings, while being robust to other musical aspects. More
precisely, we use a chroma variant referred to as CENS1 features [6],
which involve a temporal smoothing by averaging chroma vectors
over a window of length w and downsampling by a factor of d. In
our experiments, we use a feature rate of 10 Hz for the basic chroma
vectors. Then, for example, setting d = 10 and w = 41 results in
one feature vector per second (a feature resolution of 1 Hz), where
each vector is obtained by averaging over 41 consecutive frames,
corresponding to roughly 4 sec of the audio. The resulting features
CENS(w, d) show an increased robustness to local tempo changes
and allow for flexibly adjusting the temporal resolution.

In the second step, the sequence X is compared with subse-
quences Y M

t := (Y (t), . . . , Y (t + M − 1)) of length M for t ∈
[1 : N −M + 1]. Here, we adopt the idea of audio shingles [2] and
reorganize the sequences of feature vectors into shingle vectors. In
our system, we represent each query Q as a single shingle of dimen-
sionM ×12. Then, we use the cosine measure to obtain a similarity
value between X and all subsequences of Y of length M defined as
s(X,Y M

t ) = 〈X|Y M
t 〉/(||X|| · ||Y M

t ||), where ||·|| denotes the Eu-
clidean norm. In the third step, we then express the document-wise
similarity of Q and D as

S(Q,D) = maxt∈[1:N−M+1]

(
s(X,Y M

t )
)
. (1)

Given Q and a dataset D containing |D| documents, we compute
S between Q and all D ∈ D and rank the result by descending
S(Q,D). In practice, however, such an exhaustive search strategy
is not needed to find the relevant documents. Instead, one tries
to efficiently cut down the set of candidate subsequences using
index-based strategies such as locality sensitive hashing (LSH) and
computes S in Eq. (1) using only the retrieved shingles (setting
s(X,Y M

t ) = 0 for non-retrieved shingles Y M
t ).

Given the set DQ ⊂ D of documents that are relevant to the
query Q, we follow [7] and express the retrieval accuracy in terms
of the mean of average precision measure (MAP) denoted as 〈ψ〉.2

To this end, we obtain the precision ψQ at rank r ∈ [1 : |D|] as

ψQ(r) = 1
r

∑r

i=1 ΓQ(i) , (2)

where ΓQ(r) ∈ {0, 1} indicates whether a document is contained in

1Chroma Energy Normalized Statistics features, provided by the Chroma
Toolbox www.mpi-inf.mpg.de/resources/MIR/chromatoolbox

2 MAP is also used in MIREX Cover Song Identification, see www.
music-ir.org/mirex/wiki/2011:Audio Cover Song Identification

DQ. Then, the average precision ψQ is defined as

ψQ = 1
|DQ|

∑|D|
r=1 ψQ(r)ΓQ(r) . (3)

Furthermore, using several queries, we compute ψQ for each Q and

average over all values to obtain the MAP value 〈ψ〉. Furthermore,
we determine 〈ψ〉null expected under the null hypothesis of a ran-
domly created sorted list as in [7].

Typically there are tempo differences in the versions considered
in our retrieval scenario. As a result, a musical passage represented
by a query can be realized in another version with significant tempo-
ral differences. In that case, our choice of representing each query
as a single shingle would require a comparison of shingles repre-
senting feature sequences of differing length. One approach to this
problem is to use similarity measures based on dynamic time warp-
ing (DTW) or Smith-Waterman [5]. However, regarding computa-
tionally efficiency and an application in the indexing context, such
procedures are problematic. Instead, we employ the query scaling
strategy as proposed in [4]. Here, tempo differences are handled by
creating R scaled variants of the query Q(1), . . . , Q(R), each simu-
lating a global change in the tempo of the query. The similarity value
between D and Q is then defined as

S(Q,D) = maxr∈[1:R]

(
S(Q(r), D)

)
. (4)

Furthermore, as a baseline strategy, we handle tempo difference be-
tween Q and D using an offline DTW-based procedure [8] that en-
sures that corresponding feature sequences coincide in all versions.
This idealized procedure serves as reference in our experiments as it
provides an optimal estimate of S(Q,D) even in the case of strong
non-linear temporal distortions.

3. EXPERIMENTS

In this section, we describe our systematic experiments to investigate
the trade-off between efficiency and shingle characteristic. First, in
Section 3.1, we introduce our dataset. Then, in Section 3.2, we in-
vestigate how long a query Q needs to be to accurately character-
ize all versions and what a suitable feature resolution is. In Sec-
tion 3.3, we analyze how well tempo differences can be handled by
the query scaling approach (avoiding warping procedures). In Sec-
tion 3.4, we further reduce the shingle dimension using principal
component analysis (PCA). Finally, in Section 3.5, we use locality
sensitive hashing (LSH) to accelerate cross-version retrieval.

3.1. Datasets

In our experiments, we use a dataset D of 2484 audio recordings
with an overall runtime of 162 hours, see Table 1. A subset (denoted
DQueries) of 359 recordings is used for obtaining queries. These
recordings correspond to classical music pieces by three different
composers. For each piece, there are 7 to 88 different recorded ver-
sions available. More precisely, the first part Chop consists of 298
piano recordings of five Mazurkas by Frédéric Chopin.3 The sec-
ond part Beet consists of ten recorded performances of Beethoven’s
Symphony No. 5 in orchestral as well as piano interpretations. The
third part Viva contains seven orchestral performances of the Sum-
mer from Vivaldi’s Four Seasons. Additionally, we add 2125 record-
ings of various genre to enlarge the dataset. In our experiments, we
randomly select 100 queries from each of the three parts of DQueries

and average the results over the resulting 300 queries.

3This data is provided by the Mazurka Project http://mazurka.org.uk/
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Composer Piece Description # Dur. (min)

C
h
o
p

Chopin Op. 17, No. 4 Mazurka 62 269
Chopin Op. 24, No. 2 Mazurka 64 147
Chopin Op. 30, No. 2 Mazurka 34 48
Chopin Op. 63, No. 3 Mazurka 88 189
Chopin Op. 68, No. 3 Mazurka 50 84

B
e
e
t

Beethoven Op. 67, 1. Mov. Fifth 10 75
Beethoven Op. 67, 2. Mov. Fifth 10 98
Beethoven Op. 67, 3. Mov. Fifth 10 52
Beethoven Op. 67, 4. Mov. Fifth 10 105

V
i
v
a Vivaldi RV 315, 1. Mov. Summer 7 38

Vivaldi RV 315, 2. Mov. Summer 7 17
Vivaldi RV 315, 3. Mov. Summer 7 20

DQueries 359 1145
D 2484 9725

Table 1: The music collection used in our experiments. The last two columns
denote the number of different performances and the duration in minutes.

3.2. Query Length and Feature Resolution

In a first experiment, we investigate how much of a recording needs
to be captured by the query Q to robustly characterize all versions
of the underlying piece. Furthermore, we analyze to what extent the
temporal resolution of the features can be reduced without negatively
affecting the retrieval quality. Here, we exploit the downsampling
and smoothing parameters d and w of the CENS(w, d) features. The
goal is to reduce the overall dimensionality of the query while retain-
ing as much of the retrieval accuracy as possible. For the moment,
we use the DTW-based procedure to account for tempo differences
between the versions.
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Fig. 1: MAP values as a function of query length |Q| using CENS(w, d) in
different feature resolutions. Null hypothesis 〈ψ〉null = 0.015.

Fig. 1 shows MAP values obtained using CENS(w, d) features with
seven different query lengths |Q| and five different feature reso-
lutions. Obviously, the longer |Q| the higher the retrieval qual-
ity. For example, for |Q| = 28 sec, one obtains MAP values of
〈ψ〉 ≈ 0.99, regardless of the feature resolution. Short queries, how-
ever, can not accurately capture the characteristics of a piece, leading
to significantly lower MAP values. Reducing the feature resolution,
one observes lower MAP values, too, in particular in combination
with short queries. For example, using |Q| = 4 sec, one obtains
〈ψ〉 ≈ 0.94 for CENS(5, 1) (10 Hz resolution) and 〈ψ〉 ≈ 0.83 for
CENS(81, 20) (0.5 Hz resolution). Increasing the query length, how-
ever, this effect vanishes. In particular for |Q| ≥ 20 sec one obtains
similar MAP values, independent of the feature resolution. Using
d = 10 (1 Hz) as in CENS(41, 10) with |Q| = 20 sec constitutes a
good trade-off between query dimensionality and query characteris-
tic. This setting results in shingles with a dimensionality of 240.

3.3. Matching Strategy

In this experiment, we investigate how much of retrieval accuracy
is lost when using the query scaling approach for handling tempo
differences instead of the idealized DTW-based technique. Fig. 2(a)
shows the retrieval quality using CENS(41, 10) for different query
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(a) CENS(41, 10) (b) CENS(5, 1)

Fig. 2: MAP values obtained for four query scaling strategies and the DTW-
based strategy using (a) CENS(41, 10) and (b) CENS(5, 1).

scaling settings. Here, we use R variants of the query with scaling
factors specified by the set T . R = 1 means that only the original
query is used. Furthermore, we use R = 3 with T = {0.8, 1, 1.25},
meaning that the query is also stretched by a factor of 0.8 and 1.25
(thus simulating tempo changes of roughly ±25%). Similarily, we
use R = 5 with T = {0.66, 0.8, 1, 1.25, 1.5} and R = 9 with
T = {0.66, 0.73, 0.8, 0.9, 1, 1.1, 1.25, 1.35, 1.5}. The red line in-
dicates the DTW-based result as shown in Fig. 1. From these results,
we draw two conclusions. Firstly, the scaling strategy (R > 1) sig-
nificantly increases the retrieval quality in comparison to only using
the original query (R = 1). The actual choice of parameters does
not seem to be crucial. In the case of our dataset, already a small
number of additional queries (R = 3) seems to be sufficient. Sec-
ondly, the scaling strategy leads to very similar results as the com-
putationally expensive DTW-based strategy, in particular when us-
ing a large smoothing window (e. g., w = 41 in CENS(41, 10)). In
the case of the smaller smoothing window w = 5 in CENS(5, 1) (see
Fig. 2(b)), the difference is more significant. In summary, a local fea-
ture smoothing in combination with a global scaling strategy yields
a robust yet computational simple alternative to warping procedures.

3.4. Dimensionality Reduction

In a third experiment, we investigate in how far statistical data reduc-
tion based on Principal Component Analysis (PCA) can be applied
to CENS features to further reduce the dimensionality of the query.
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Fig. 3: MAP values as a function of feature dimension obtained by PCA-
based dimension reduction of CENS(w, d).

We estimate the principal components using all non-query docu-
ments of our dataset and project all feature sequences onto the most
dominating components. Fig. 3 shows MAP values obtained for
PCA-reduced variants of CENS features with 1-12 remaining di-
mensions. For a query length |Q| = 20 sec (Fig. 3a), MAP values
are nearly unaffected when reducing the number of dimensions from
12 to 4, in particular for higher feature resolutions. However, in
combination with shorter queries of |Q| = 10 (Fig. 3b), the retrieval
quality is more affected by a dimensionality reduction.

In the following, we use the first 6 components of CENS(41, 10)
features, denoted as CENS(41, 10)-6.4 Using |Q| = 20, this results

4Further experiments revealed that CENS(41, 10)-6 is very similar to the
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Fig. 4: Illustration of the MAP values and runtimes obtained using
CENS(41, 10)-6 with different parameter settings in the LSH-based retrieval
experiment. (a) Retrieval quality MAP. (b) Overall runtime per query includ-
ing index lookup time and document ranking time. Horizontal black lines
indicate values obtained by the exhaustive search.

in 120-dimensional shingles, which constitutes a reasonable trade-
off between shingles dimensionality and shingle characteristic.

3.5. Locality Sensitive Hashing

We now investigate whether it is possible to index shingles of this
size using locality sensitive hashing (LSH) for accelerating the re-
trieval. LSH is a hash-based approach for finding approximate near-
est neighbors based on the principal that similar shingles are indexed
with the same hash value. In our experiment, we use an implementa-
tion of the Exact Euclidean LSH (E2LSH) algorithm [10]. We index
all shingles of the entire dataset D using L parallel indices and K
hash functions. For a query shingle Q we retrieve all shingles from
the index with the same hash value as the query. Given this (typ-
ically small) set of candidate shingles, we derive the ranked list of
documents and compute MAP values as described in Section 2.

Fig. 4 shows MAP values (Fig. 4a) and runtime per query in mil-
liseconds5 (Fig. 4b) as a function of K for different L.6 These are
crucial parameters having a tremendous influence on the trade-off
between retrieval quality and runtime. For example, setting K = 12
and L = 5 results in a MAP 〈ψ〉 ≈ 0.90, see black square in Fig. 4a.
This is only slightly lower than the MAP value one obtains for the
exhaustive search (horizontal black line). However, the runtime for
this setting is significantly (by a factor of 25) faster than for the ex-
haustive search, see black square in Fig. 4b. K and L allow for
controlling the trade-off between speed and quality of the results.
Setting K = 25 and L = 10, the MAP drops to 〈ψ〉 ≈ 0.80 (black
circle). However, this goes along with a decrease of query runtime
to 5 ms, a speed-up of 100 in comparison to the exhaustive search.

The results shown in Fig. 4 are again obtained using the ideal
DTW-based procedure for handling tempo differences. Fig. 5 now
shows the comparison of the warping (solid line) with the query scal-
ing approach (dashed line) for L = 5 and L = 30. Similar as for
the exhaustive search discussed in Section 3.3, usingR = 5, one ob-
serves only a small drop in retrieval quality (see Fig. 4a). Using this
strategy, the runtime per query linearly increases with the number of
scaled queries R (see Fig. 4b).

4. CONCLUSIONS

Concluding the experiments, one can say that even when using large
shingles (covering roughly 20 seconds of audio material), LSH-
based indexing techniques can be applied for obtaining a significant

musically motivated 6-dimensional tonal centroid proposed in [9].
5obtained on a Xeon X5560 CPU with 72GB of RAM
6The quantization parameter denoted r in [10] is found as proposed in [2].
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Fig. 5: Comparison of two LSH-based retrieval strategies. Warp-
ing strategy (solid line) and query scaling strategy (R = 5, T =
{0.66, 0.8, 1, 1.25, 1.5}) (dashed line) using CENS(41, 10)-6. (a) MAP val-
ues. (b) Overall runtime per query.

speed-up of the retrieval process (up to factor of 100). At the same
time, most of the accuracy of an exhaustive search can be retained.
To facilitate this, we determined suitable parameter settings with
regard to query length, feature resolution and smoothing, as well
as shingle dimension. The advantage of using shingles that repre-
sent a large audio fragment is that most versions of a given piece
can be characterized and retrieved by using a single shingle. In
future work, we exploit this to significantly reduce the number of
hash-table lookups needed for performing cross-version retrieval.
The number of lookups becomes a crucial bottleneck when the
index structure is stored on secondary storage devices, which is
unavoidable when dealing with collections of millions of songs.
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